This a NetMan Task Group P802.16g Baseline Document. This is not an IEEE Draft Standard.

Draft Amendment to IEEE Standard for Local and metropolitan area networks

Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems

Amendment to IEEE Standard for Local and Metropolitan Area Networks - Management Plane Procedures and Services

Sponsor
LAN MAN Standards Committee
of the
IEEE Computer Society
and the
IEEE Microwave Theory and Techniques Society

Abstract: This document defines Management Procedures as enhancements to the IEEE 802.16 air interface standard for fixed and mobile broadband wireless systems. It specifies the management functions, interfaces and protocol procedures.

Keywords: fixed broadband wireless access network, mobile broadband wireless access network, metropolitan area network, microwave, millimeter wave, management, WirelessMAN™ standards
This page is intentionally left blank
Contents

1. Introduction ... 1
2. References .. 2
3. Definitions ... 2
4. Abbreviations and acronyms ... 2
14. Management Interfaces and Procedures .. 3
 14.1 Overview .. 3
 14.2 Requirements .. 3
 14.2.1 Architectural Requirements ... 3
 14.2.2 Configuration Requirements ... 3
 14.2.3 Security Requirements ... 3
 14.2.4 Mobility Requirements .. 4
 14.2.5 Data Traffic Requirements .. 4
 14.3 Information Model Aspects ... 6
 14.3.1 Information Service Models ... 6
 14.3.1.1 Information entities imported and local labels ... 6
 14.3.1.2 Class diagram ... 7
 14.3.1.3 Information object classes definition ... 8
 14.3.1.3.1 IOC BsFunction .. 8
 14.3.1.3.2 IOC WmanSsFunction ... 9
 14.3.1.3.3 IOC xxx .. 9
 14.3.1.3.4 IOC yyy .. 9
 14.3.1.4 Information relationships definition ... 9
 14.3.1.5 Notifications ... 9
 14.3.1.6 Information attributes definition ... 9
 14.3.1.6.1 Definition and legal values ... 10
 14.3.2 Architectural Aspects .. 11
 14.4.1 Network Reference Model ... 11
 14.4.1.1 Network Control and Management System (NCMS) ... 11
 14.4.1.1.1 SS/MSS and BS Interface ... 12
 14.4.1.1.2 BS and NCMS Interface ... 12
 14.4.2 Management Interfaces .. 14
 14.5 Management Functions .. 14
 14.5.1 Fault Management ... 14
 14.5.1.1 Events/Logs ... 14
 14.5.1.1.1 Persistence Requirements ... 14
 14.5.1.2 Notification/Triggers .. 14
 14.5.2 Configuration Management .. 14
 14.5.2.1 Capability Management .. 14
 14.5.2.2 Basic RF Configuration .. 14
 14.5.2.3 Basic MAC Configuration .. 14
 14.5.2.4 BS Time Configuration .. 14
 14.5.3 Accounting Management .. 14

This is an IEEE P802.16g baseline document, subject to change.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5.4</td>
<td>Performance Management</td>
<td>15</td>
</tr>
<tr>
<td>14.5.5</td>
<td>Security Management</td>
<td>15</td>
</tr>
<tr>
<td>14.5.5.1</td>
<td>Authentication, Authorization and Accounting (AAA) Guidelines</td>
<td>15</td>
</tr>
<tr>
<td>14.5.5.2</td>
<td>Security Context and Key Management</td>
<td>15</td>
</tr>
<tr>
<td>14.5.5.3</td>
<td>Security for Handoffs</td>
<td>15</td>
</tr>
<tr>
<td>14.5.5.4</td>
<td>Protecting Management Messages</td>
<td>15</td>
</tr>
<tr>
<td>14.5.6</td>
<td>Service Flow Management</td>
<td>15</td>
</tr>
<tr>
<td>14.5.6.1</td>
<td>BS Service Provisioning</td>
<td>15</td>
</tr>
<tr>
<td>14.5.6.2</td>
<td>SS/MSS Provisioning</td>
<td>15</td>
</tr>
<tr>
<td>14.5.6.3</td>
<td>SS/MSS Connection Management</td>
<td>15</td>
</tr>
<tr>
<td>14.5.6.4</td>
<td>QoS Management</td>
<td>15</td>
</tr>
<tr>
<td>14.5.6.5</td>
<td>Managing Connection Resources</td>
<td>15</td>
</tr>
<tr>
<td>14.5.6.6</td>
<td>Managing Multicast Broadcast Services</td>
<td>15</td>
</tr>
<tr>
<td>14.5.7</td>
<td>Subscriber Mode Management</td>
<td>16</td>
</tr>
<tr>
<td>14.5.7.1</td>
<td>Managing Device States</td>
<td>16</td>
</tr>
<tr>
<td>14.5.8</td>
<td>Roaming Management</td>
<td>16</td>
</tr>
<tr>
<td>14.5.9</td>
<td>Mobility and Handover Management</td>
<td>16</td>
</tr>
<tr>
<td>14.5.9.1</td>
<td>Mobility Parameters</td>
<td>16</td>
</tr>
<tr>
<td>14.5.9.1.1</td>
<td>Handover Context for Connections</td>
<td>16</td>
</tr>
<tr>
<td>14.5.9.1.2</td>
<td>Neighbor List Management</td>
<td>16</td>
</tr>
<tr>
<td>14.5.9.1.3</td>
<td>Connection Management during handover</td>
<td>16</td>
</tr>
<tr>
<td>14.5.9.2</td>
<td>Paging Management</td>
<td>16</td>
</tr>
<tr>
<td>14.5.9.2.1</td>
<td>Paging Procedure</td>
<td>16</td>
</tr>
<tr>
<td>14.5.9.3</td>
<td>Location Management</td>
<td>16</td>
</tr>
<tr>
<td>14.5.9.3.1</td>
<td>Location Update Procedure</td>
<td>16</td>
</tr>
<tr>
<td>14.5.9.4</td>
<td>MSS Handover Management</td>
<td>16</td>
</tr>
<tr>
<td>14.5.9.5</td>
<td>Inter BS Handover Management</td>
<td>16</td>
</tr>
<tr>
<td>14.5.9.6</td>
<td>Macro Diversity Management</td>
<td>16</td>
</tr>
<tr>
<td>14.5.9.7</td>
<td>Handover Control Protocol Procedures</td>
<td>16</td>
</tr>
<tr>
<td>14.5.9.7.1</td>
<td>Hard Handoff Procedures</td>
<td>17</td>
</tr>
<tr>
<td>14.5.9.7.2</td>
<td>Fast Base Station Switching Procedures</td>
<td>17</td>
</tr>
<tr>
<td>14.5.9.7.3</td>
<td>Soft Handoff Procedures</td>
<td>17</td>
</tr>
<tr>
<td>14.5.10</td>
<td>Backbone Messages</td>
<td>17</td>
</tr>
<tr>
<td>14.5.11</td>
<td>Interface SAP for Upper Layer Protocols</td>
<td>17</td>
</tr>
<tr>
<td>14.5.12</td>
<td>Radio Resource Management</td>
<td>17</td>
</tr>
<tr>
<td>14.5.12.1</td>
<td>Radio Measurement and Reporting</td>
<td>17</td>
</tr>
<tr>
<td>14.5.12.2</td>
<td>Power Control Management</td>
<td>17</td>
</tr>
<tr>
<td>14.5.13</td>
<td>MAC Management Enhancements</td>
<td>17</td>
</tr>
<tr>
<td>14.5.13.1</td>
<td>Service Identity Broadcast</td>
<td>17</td>
</tr>
<tr>
<td>14.5.13.1.1</td>
<td>Service Identity Information (SII) message</td>
<td>17</td>
</tr>
<tr>
<td>14.5.13.1.2</td>
<td>Service Information Identity (SII) TLV</td>
<td>18</td>
</tr>
<tr>
<td>14.5.13.1.3</td>
<td>Service Identity TLV</td>
<td>18</td>
</tr>
</tbody>
</table>

Annex F: IRP Solution Sets for Management (Informative) | 19 |

Annex G: Network Topologies (Informative) | 19 |
G.1 Full distributed network | 19 |
G.2 Centralized network | 20 |
List of Tables

Table 1—Information entities imported and local labels ... 6
Table 2—Attributes ... 9
Table 4—Definition and legal values .. 10
Table 3—Attributes ... 10
Table 14—MAC Management Messages .. 17
Table 16—Service Identity Information (SII) Compound TLV .. 18
Table 17—Using 24-bit Identity .. 18
Table 18—Using NAI .. 18
Table 15—Service Identity Information (SII) message format ... 18
List of Figures

Figure 1—Containment and Naming Diagram ... 7
Figure 2—Inheritance Diagram .. 8
Figure 3—802.16g Network Reference Model ... 9
Figure 4—Illustration of the Network Control and Management System (Informational) 11
Figure 5—802.16g Protocol Architecture Model ... 12
Figure 6—Distributed network ... 19
Baseline document for Draft Amendment to IEEE Standard for Local and metropolitan area networks

Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems —

Management Plane Procedures and Services

NOTE-The editing instructions contained in this amendment define how to merge the material contained herein into the existing base standard IEEE Std 802.16-2004.

The editing instructions are shown bold italic. Four editing instructions are used: change, delete, insert, and replace. Change is used to make small corrections in existing text or tables. The editing instruction specifies the location of the change and describes what is being changed by using strike through (to remove old material) and underscore (to add new material). Delete removes existing material. Insert adds new material without disturbing the existing material. Insertions may require renumbering. If so, renumbering instructions are given in the editing instruction. Replace is used to make large changes in existing text, subclauses, tables, or figures by removing existing material and replacing it with new material. Editorial notes will not be carried over into future editions because the changes will be incorporated into the base standard.

1. Introduction

Scope: This document provides enhancements to the MAC and PHY management entities of IEEE Standard 802.16-2004, as amended by P802.16e, to create standardized procedures and interfaces for the management of conformant 802.16 devices.

Purpose: The purpose of this project is to provide conformant 802.16 equipment with procedures and services to enable interoperable and efficient management of network resources, mobility, and spectrum, and to standardize management plane behavior in 802.16 fixed and mobile devices.
2. References

This standard shall be used in conjunction with the following publications. When the following specifications are superseded by an approved revision, the revision shall apply.

3. Definitions

[Insert the following definitions as specified below]

U Interface - The management and control interface that exists between the SS and the BS over the air interface.

4. Abbreviations and acronyms

[Insert the following abbreviations and acronyms into the the text as specified below]

IRP - Integration Reference Point

NRM - Network Reference Model

MIB - Management Information Base
14. Management Interfaces and Procedures

14.1 Overview

The 802.16 devices within the purview of this specification can include 802.16-2004 subscriber stations (SS) or 802.16e mobile subscriber stations (MSS) or base stations (BS). As the 802.16 devices may be part of a larger network and therefore would require interfacing with entities for management and control purposes, this document assumes a Network Control and Management System (NCMS) abstraction that interfaces with the base stations. The NCMS abstraction allows the PHY/MAC/CS layers specified in 802.16 to be independent of the network architecture, the transport network, and the protocols used at the backend and therefore allows greater flexibility on the network side. Any necessary inter-BS coordination is handled through the NCMS. This specification will only describe procedures for management and control interactions between the MAC/PHY/CS layers of the 802.16 devices and the NCMS. The details of the various entities that form the Network Control and Management System are outside the purview of this specification. An abstracted network reference model is presented to clearly depict the interfaces that are assumed to be in scope of the specification.

14.2 Requirements

<a>Section Notes: This section describes the functional requirements that need to be addressed by the 802.16g specification. However this section is purely informational and meant to guide the development of this document.>

14.2.1 Architectural Requirements

These are requirements that impact the FS, MS or BS from an air interface management and control perspective. These requirements do not assume a specific radio access network architectural topology and any implied physical connectivity model (eg. Routed vs Switched).

a) Data, Control and Management Plane separation shall be maintained for all protocol procedures specified.

b) The protocol procedures shall not tie a service to the access network.

c) The communication mechanisms assumed between BSes shall be protocol agnostic.

14.2.2 Configuration Requirements

a) BS shall be able to manage FS/MS configuration parameters individually or as a group.

b) BS shall be able to request parameters from neighboring BSes, including information about MSES attached to it.

c) FS/MS shall be able to override some of the configuration parameters that are managed by the BS when they do not impact the network.

d) BS should provide an interface for reading configuration parameters.

e) BS should provide the ability to update software and service capabilities on the mobile station.

14.2.3 Security Requirements

a) BS shall be able to request FS/MS re-authentication at anytime.
b) The security capabilities of the weakest FS/MS or BS should not compromise the security of the other devices.

c) BS should support faster HO re-authentication.

14.2.4 Mobility Requirements

a) MS and BS shall support primitives for enabling upper layer mobility management protocols

b) HO capabilities at varying levels should be exposed appropriately to the upper layers.

c) Location determination shall be supported within the accuracy as determined by the laws and regulations of the geographical area.

d) Location servers may request location information on demand. Primitives for a loss less handoff shall be supported for non real time traffic (e.g. HTTP.) A loss less handoff is characterized by no frame loss during the handoff. The MAC frames could be buffered at the source BS and delivered to the target after the handoff completion.

14.2.5 Data Traffic Requirements

14.2.5.1 Traffic Policies

a) Traffic Policies may be advertised during network entry and handover and may be enforceable by the BS.

b) QoS differentiation shall be supported through primitives to enable proper traffic prioritization by upper layer protocols.

14.2.5.2 Traffic filters

<Tbd>

14.2.6 Performance Requirements

a) Protocol primitives defined shall maximize the MS battery lifetime.

b) Protocol primitives for fast and seamless handoff shall be supported for real time traffic (e.g. VoIP). A fast and seamless handoff is characterized by low latency and tolerance for few frame drops without any noticeable glitch to the end user.

c) The following values must be made available in real-time with redisplay intervals of no less than 1000 msecs, with the option to be displayed in both cumulative and delta modes:

1) "Paging Channel
 -Paging Channel Delivery
 -Occupancy/capacity used

2) "Access Channel
 -Access Channel Reception
 -Occupancy/ Capacity

3) "State transitions
 -Timing/ delay

4) "Registrations
 -Successful and failed
 -Forward Traffic Channel Delivery
 -Total and Per user

5) "MAC retries
6) "PHY retries
7) "MAC latency
8) "Total blocks/PDU assigned and delivered
9) "Uncorrectable Errors
10) "Signal Strength (RSSI)
11) "CINR
12) "Reverse Traffic Channel Reception
 - Total and Per user
13) "UL & DL Power Measurements
 - Total and per user

14.2.6.1 HO Latency

a) FBSS - BS transition latency < (tbd)
b) Hard-HO - BS transition latency < (tbd)

14.2.7 Resource Management Requirements

a) Procedures for Emergency services shall be supported also for unidentified/unauthorized user. These procedures shall be given priority in resource allocation so as to increase the chance of success in connection initiation and handoffs.
b) Primitives for sharing available Resource/Traffic Load information dynamically among the neighbor BSs for the efficient use of radio resources.
c) Flexible bandwidth allocation shall be supported to fulfill the QoS requirement with any possible adaptation to efficiently utilize the spectrum
d) Procedures supporting load balancing shall be supported and provisioned among the BSs for increased system utilization and accommodating more users
e) BS supporting mobility, shall provide protocol primitives for collecting and forwarding neighbor BS information advertisements.
f) BSes should be capable of providing default transport connections for MSes that need to use it for emergency services.
g) 802.16g entities (BS/MS) shall provide relevant reports (e.g. measurements) on resource information for use by entities on the network.

14.2.8 Element Management Requirements

a) Statistics for the FS/MSes should be collected by the BS using primitives defined and available to a higher layer Network Management Protocols.
b) Statistics for the BS (e.g. usage of resources) should be collected by the BS and available to a higher layer Network Management Protocols
c) MS should collects statistics on the radio link that may be queried by the BS.
d) MSes and BSes should also collect statistics on neighboring BSes for the purposes of HO.

14.2.9 Specification Requirements

There are several usage scenarios based on 802.16's specifications, such as Fixed Access, Nomadcity, Portability with Simple Mobility Support, Full Mobility Support. If a procedure, message, IE or IRP does not apply to all usage scenarios, the scenarios it applies to will be clearly specified.
14.3 Information Model Aspects

For the purpose of Management Interface development an Interface Methodology known as Integration Reference Point (IRP) was developed to promote the wider adoption of standardized Management interfaces in telecommunication networks. The IRP methodology employs Protocol & Technology Neutral modeling methods as well as protocol specific solution sets to help achieve its goals. The Integration Reference Point is a methodology to aid a modular approach to the development of standards interfaces.

There are three cornerstones to the IRP approach:

1. Top-down, process-driven modeling approach

The process begins with a requirements phase, the aim at this step is to provide conceptual and use case definitions for a specific interface aspect as well as defining subsequent requirements for this IRP.

2. Technology-independent modeling

The second phase of the process is the development of a protocol independent model of the interface. This protocol independent model is specified in the IRP Information Service.

3. Standards-based technology-dependent modeling

The third phase of the process is to create one or more interface technology and protocol dependent models from the Information Service model. This is specified in the IRP Solution Set(s).

14.3.1 Information Service Models

Information Service Models refer to both Interface IRPs and NRM IRPs.

This section is providing the IEEE 802.16 protocol neutral (IS) resource model (NRM/MIB) definitions.

14.3.1.1 Information entities imported and local labels

Table 1—Information entities imported and local labels

<table>
<thead>
<tr>
<th>Label reference</th>
<th>Local label</th>
</tr>
</thead>
<tbody>
<tr>
<td>information object class, ManagedElement</td>
<td>ManagedElement</td>
</tr>
<tr>
<td>information object class, ManagedFunction</td>
<td>ManagedFunction</td>
</tr>
<tr>
<td>information object class, SubNetwork</td>
<td>SubNetwork</td>
</tr>
<tr>
<td>information object class, Top</td>
<td>Top</td>
</tr>
</tbody>
</table>
14.3.1.2 Class diagram

14.3.1.2.1 Attributes and relationships

Figure 1 establishes the naming and containment for the protocol neutral network management models of the 802.16 standard. The inheritance diagram show in Figure 2 is based on 802.16e and 802.16-2004. This diagram establishes the context of the IOC and shows ME’s as inventory items and MF’s as the functions that perform functions in the 802.16 network.

![Class Diagram](image)

Figure 1—Containment and Naming Diagram

14.3.1.2.2 Inheritance

This clause depicts the inheritance relationships that exist between information object classes.
14.3.1.3 Information object classes definition

14.3.1.3.1 IOC BsFunction

14.3.1.3.1.1 Definition

This IOC represents a WMAN base station. For more information, see [zz]. It is derived from Managed-Function.
14.3.1.3.1.2 Attributes

Table 2—Attributes

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Defined in</th>
<th>Visibility</th>
<th>Support Qualifier</th>
<th>Read Qualifier</th>
<th>Write Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>BsFunctionId</td>
<td>--</td>
<td>+</td>
<td>M</td>
<td>M</td>
<td>--</td>
</tr>
<tr>
<td>objectClass</td>
<td>Top</td>
<td>inherited</td>
<td>M(^\text{inherited})</td>
<td>M(^\text{inherited})</td>
<td>--(^\text{inherited})</td>
</tr>
<tr>
<td>objectInstance</td>
<td>Top</td>
<td>inherited</td>
<td>M(^\text{inherited})</td>
<td>M(^\text{inherited})</td>
<td>--(^\text{inherited})</td>
</tr>
<tr>
<td>userLabel</td>
<td>ManagedFunction</td>
<td>inherited</td>
<td>M(^\text{inherited})</td>
<td>M(^\text{inherited})</td>
<td>M(^\text{inherited})</td>
</tr>
<tr>
<td>aaa</td>
<td>--</td>
<td>+</td>
<td>O</td>
<td>M</td>
<td>--</td>
</tr>
<tr>
<td>bbb</td>
<td>--</td>
<td>+</td>
<td>O</td>
<td>M</td>
<td>--</td>
</tr>
<tr>
<td>yyy</td>
<td>--</td>
<td>+</td>
<td>O</td>
<td>M</td>
<td>--</td>
</tr>
<tr>
<td>zzz</td>
<td>--</td>
<td>+</td>
<td>O</td>
<td>M</td>
<td>--</td>
</tr>
</tbody>
</table>

14.3.1.3.2 IOC WmanSsFunction

14.3.1.3.2.1 Definition

This IOC represents a WMAN subscriber station. For more information, see [tbd]. It is derived from ManagedFunction.

14.3.1.3.2.2 Attributes

14.3.1.3.3 IOC xxx

14.3.1.3.4 IOC yyy

14.3.1.4 Information relationships definition

14.3.1.5 Notifications

14.3.1.6 Information attributes definition
Table 3—Attributes

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Defined in</th>
<th>Visibility</th>
<th>Support Qualifier</th>
<th>Read Qualifier</th>
<th>Write Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>SsFunctionId</td>
<td>--</td>
<td>+</td>
<td>M</td>
<td>M</td>
<td>--</td>
</tr>
<tr>
<td>objectClass</td>
<td>Top</td>
<td>+ inherited</td>
<td>M inherited</td>
<td>M inherited</td>
<td>-- inherited</td>
</tr>
<tr>
<td>objectInstance</td>
<td>Top</td>
<td>+ inherited</td>
<td>M inherited</td>
<td>M inherited</td>
<td>-- inherited</td>
</tr>
<tr>
<td>userLabel</td>
<td>ManagedFunction</td>
<td>+ inherited</td>
<td>M inherited</td>
<td>M inherited</td>
<td>-- inherited</td>
</tr>
<tr>
<td>ccc</td>
<td>--</td>
<td>+</td>
<td>O</td>
<td>M</td>
<td>--</td>
</tr>
<tr>
<td>www</td>
<td>--</td>
<td>+</td>
<td>O</td>
<td>M</td>
<td>--</td>
</tr>
<tr>
<td>xxx</td>
<td>--</td>
<td>+</td>
<td>O</td>
<td>M</td>
<td>--</td>
</tr>
</tbody>
</table>

14.3.1.6.1 Definition and legal values

Table 4—Definition and legal values

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Definition</th>
<th>Legal Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>BsFunctionId</td>
<td>It contains 'name+value' that is the RDN, when naming an instance, of this object class containing this attribute. This RDN uniquely identifies the object instance within the scope of its containing (parent) object instance.</td>
<td>--</td>
</tr>
<tr>
<td>SsFunctionId</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>ZzzId</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>aaa</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td>bbb</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td>ccc</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td>ddd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td>objectClass</td>
<td>As defined in [zz]: An attribute which captures the name of the class from which the object instance is an occurrence of.</td>
<td>--</td>
</tr>
</tbody>
</table>
14.4 Architectural Aspects

This specification includes primitives that are exposed to upper layers in a consistent manner for use by control and management plane protocols in a network agnostic manner. The network that manages and controls an 802.16 air interface device is therefore abstracted as a Network Control and Management System (NCMS).

14.4.1 Network Reference Model

The Figure 3 describes a network reference model along with the interfaces that are within the scope of this specification. Multiple SS or MSS maybe attached to a BS. The SS communicate to the BS over the U interface using a Primary Management Connection or a Secondary Management Connection. MSS typically only utilize the Primary Management Connection over the U interface for management and related control functions.

![Figure 3—802.16g Network Reference Model](image)

14.4.1.1 Network Control and Management System (NCMS)

This abstraction is detailed in Figure 4 to show the different functional entities that make up such a Network Control and Management System. These entities may be centrally located or distributed across the network. The exact functionality of these entities and their services is outside the scope of this specification but shown here for illustration purposes and to better enable the description of the management and control procedures.
NCMS protocols are not defined in this specification, however information elements (IEs) and protocol primitives for these IEs are exposed using Service Access Points (SAP). This includes CS, MAC and PHY layer context information used by NCMS protocols to manage and control the air interface. Every BS is assumed to be part of an NCMS and therefore as shown in Figure 3.

14.4.1.1.1 SS/MSS and BS Interface

This U interface may be implemented using either a primary management connection or a secondary management connection.

14.4.1.1.2 BS and NCMS Interface

This interface is a set of Service Access Points (SAP) and is represented and in the Figure 5 below. It is decomposed into two parts: the Management SAP used for Management primitives alone and the Control SAP is used for Control plane primitives that to support handovers, security context management, radio resource management, and low power operations (such as Idle mode and paging functions). The primary goal of such an interface is to ensure protocol separation.

These primitives do not define end to end protocol flows, but rather commands and indications for access to the Management and Control entities for the CS/MAC/PHY layers. Protocol procedures are defined using one or more of these primitives for performing distinct protocol functions on the air interface (e.g., Paging, Handover, etc.).

Management and Control entities are logical and may have SAPs between their protocol layers, however for simplicity they are not defined.
14.4.1.1.2.1 Management SAP (M_SAP)

The Management SAP may include, but is not limited to primitives related to:

- System configuration
- Monitoring Statistics
- Notifications/Triggers

14.4.1.1.2.2 Control SAP (C_SAP)

The Control SAP may include, but is not limited to primitives related to:

- Handovers (e.g. notification of HO request from MS, etc.)
- Idle mode mobility management (e.g. Mobile entering idle mode)
- Subscriber and session management (e.g. Mobile requesting session setup)
- Radio resource management, etc.
- AAA server signaling (Eg. EAP payloads).
14.4.2 Management Interfaces

14.4.3 Information Service Models

14.5 Management Functions

14.5.1 Fault Management

14.5.1.1 Events/Logs

14.5.1.1.1 Persistance Requirements

14.5.1.2 Notification/Triggers

<Section Note: Notification for events and trigger functions associated with some events are described>

14.5.2 Configuration Management

14.5.2.1 Capability Management

<Section Note: Subscriber Basic Capabilities negotiation recommendations>

14.5.2.2 Basic RF Configuration

<Section Note: Procedures for setting and retrieving system information about frequency assignments for sectors, channel bandwidths, FFT sizes, Tx Power, etc. are described>

14.5.2.3 Basic MAC Configuration

<Section Note: Procedures for setting and retrieving MAC parameters like SDU size limits, PDU size limits, list of Service classes supported, scan list, packing, fragmentation, ARQ block sizes etc. are described>

14.5.2.4 BS Time Configuration

<Section Note: Procedures for setting and retrieving BS time information are described.

14.5.3 Accounting Management
14.5.4 Performance Management

14.5.5 Security Management

14.5.5.1 Authentication, Authorization and Accounting (AAA) Guidelines

<Section Note: Recommendations for utilizing EAP, RADIUS protocols>

14.5.5.2 Security Context and Key Management

<Section Note: Recommendations for establishment and management of Security Associations, Key establishment and caching policies.>

14.5.5.3 Security for Handoffs

<Section Note: Recommendations for Security context re-establishment during handoffs, key binding and key usage policies>

14.5.5.4 Protecting Management Messages

<Section Note: Recommendations for protecting management messages.>

14.5.6 Service Flow Management

14.5.6.1 BS Service Provisioning

<Section Note: Provisioning of the services on the BS are described. Ex: Setting and retrieval of Operator IDs, BS IDs etc. and type of convergence layers supported and their configuration parameters are described.>

14.5.6.2 SS/MSS Provisioning

<Section Note: Provisioning. Configuration and management for BS initiated connections and service flow creations for static and dynamic QoS>

14.5.6.3 SS/MSS Connection Management

<Section Note: Recommendations for utilizing DHCP protocol>

14.5.6.4 QoS Management

<Section Note: CID and SFID Management, Managing Bandwidth Requests and Grants. QoS Mapping for 802.16-Service-Flows to Network-Flows>

14.5.6.5 Managing Connection Resources

<Section Note: Managing constraints on the CID and SFID related resources. Recommendations on when CIDs could be recycled etc.>

14.5.6.6 Managing Multicast Broadcast Services

<Section Note: >
14.5.7 Subscriber Mode Management

14.5.7.1 Managing Device States

<Section Note: Idle Mode, Sleep Mode, Active Mode>

14.5.8 Roaming Management

14.5.9 Mobility and Handover Management

14.5.9.1 Mobility Parameters

<Section Note: Requirements for different kinds of handoff (Hard-Handoff, FBSS, SHO). Thresholds etc.>

14.5.9.1.1 Handover Context for Connections

14.5.9.1.2 Neighbor List Management

14.5.9.1.3 Connection Management during handover

14.5.9.2 Paging Management

14.5.9.2.1 Paging Procedure

14.5.9.3 Location Management

14.5.9.3.1 Location Update Procedure

14.5.9.4 MSS Handover Management

<Section Note: How an MSS handles its handover functions>

14.5.9.5 Inter BS Handover Management

<Section Note: How a BS handles its handover functions with neighboring BSes>

14.5.9.6 Macro Diversity Management

<Section Note: How a BS along with the NCMS entities handles macro diversity>

14.5.9.7 Handover Control Protocol Procedures

<Section Note: Handover protocol message flow diagrams and explanations>
14.5.9.7.1 Hard Handoff Procedures

14.5.9.7.2 Fast Base Station Switching Procedures

14.5.9.7.3 Soft Handoff Procedures

14.5.10 Backbone Messages

14.5.11 Interface SAP for Upper Layer Protocols

<Section Notes: This section provides triggers for upper layer protocols on events occurring in the 802.16 air interface. This section includes definitions from P802.16e/D4 Annex D4.2>

14.5.12 Radio Resource Management

14.5.12.1 Radio Measurement and Reporting

<Section Note: PHY Specific sections for SS/MSS and BS Radio Measurements>

14.5.12.2 Power Control Management

<Section Note: PHY Specific sections>

14.5.13 MAC Management Enhancements

14.5.13.1 Service Identity Broadcast

[Add the following entries to Table 14 in IEEE Standard 802.16-2004]

<table>
<thead>
<tr>
<th>Type</th>
<th>Message name</th>
<th>Message description</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>SII</td>
<td>MAC management message</td>
<td>broadcast CID</td>
</tr>
</tbody>
</table>

14.5.13.1.1 Service Identity Information (SII) message

A BS may use the SII message to broadcast service identity information. The message may be broadcast periodically without solicitation or could be solicited by an (M)SS. This message is sent from the BS to all MSSs on a broadcast CID.
14.5.13.1.2 Service Information Identity (SII) TLV

It is a compound TLV that contains 1 or more service identity, and it is used in a broadcast SII message.

Table 15—Service Identity Information (SII) message format

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SII_REQ () {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management message type = xxx</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>TLV Encoded Information</td>
<td>Variable</td>
<td>TLV specific</td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14.5.13.1.3 Service Identity TLV

The service identity can be represented as a 24-bit identity or NAI. The following TLVs are defined for each representation of the identity.

Table 16—Service Identity Information (SII) Compound TLV

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Variable</td>
<td>Compound</td>
</tr>
</tbody>
</table>

Table 17—Using 24-bit Identity

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3 bytes</td>
<td>24-bit Identifier</td>
</tr>
</tbody>
</table>

Table 18—Using NAI

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>32 bytes</td>
<td>realm</td>
</tr>
</tbody>
</table>
Appendix 1

<Section Note: Discussion on Spanning Tree>

Annex F: IRP Solution Sets for Management (Informative)

Annex G: Network Topologies (Informative)

This annex provides two types of network topologies without precluding other typical topologies.

G.1 Full distributed network

Figure 6 is a diagram of the typical full distributed network.

In a full distributed network, BS connects to IP network directly. NCMS is implemented as several network elements, each of the elements is also connects to IP network directly. Some NCMS functions, such as gateway and router service, are embedded in BS.

G.2 Centralized network

802.16’s network can also be deployed as cellular system does now. Figure 7 is a diagram of the typical centralized network, which is similar to 3G core network.

<Section Note: Figure 7 TBD>