Project	IEEE 802.16j	
Title	Comparison of multipath channel models for II	EEE 802.16j Relay Task Group
Date Submitted	2006-07-01	
Source(s)	Wendy C Wong Timothy F Cox Intel Corporation 2200 Mission College Blvd., Santa Clara, CA 95054, USA.	wendy.c.wong@intel.com
	I-Kang Fu National Chiao Tung University / Industrial Technology Research Institute 1001 Ta Hsueh Road, Hsinchu, Taiwan 300, ROC.	IKFu@itri.org.tw
	David Chen Motorola Inc 1441 W. Shure Drive, Arlington Heights, IL 60004 USA.	david.t.chen@motorola.com
	Mike Hart Sunil Vadgama Fujitsu Laboratories of Europe Ltd. Hayes Park Central Hayes End, Middx., UB4 8FE, UK.	Mike.Hart@uk.fujitsu.com
	Peter Wang Nokia US 6000 Connection Dr Irving, TX 75039, USA.	peter.wang@nokia.com
Re:	Call for comments and contributions for session#4	4 (IEEE 802.16j-06/006)
Abstract	This contribution compares different multipath mo	odels for IEEE 802.16j Relay TG.
Purpose	Response the chair's call for comments on Evaluar	tion Methodology (C802.16j_06/040)
Notice	This document has been prepared to assist IEEE 802.16. It is the contributing individual(s) or organization(s). The materic content after further study. The contributor(s) reserve(s) the herein.	al in this document is subject to change in form and
Release	The contributor grants a free, irrevocable license to the IEEE and any modifications thereof, in the creation of an IEEE Stan IEEE Standards publication even though it may include portion to permit others to reproduce in whole or in part the result acknowledges and accepts that this contribution may be made p	dards publication; to copyright in the IEEE's name any ns of this contribution; and at the IEEE's sole discretion ing IEEE Standards publication. The contributor also
Patent Policy and Procedures	The contributor is familiar with the IEEE http://ieee802.org/16/ipr/patents/policy.html , including the of patent(s), including patent applications, provided the IEEE with respect to patents essential for compliance with both m disclosure to the Working Group of patent information that mi possibility for delays in the development process and increapproved for publication. Please notify the Chair mailto:chaitelectronic form, if patented technology (or technology under standard being developed within the IEEE 802.16 Working CIEEE 802.16 web site http://ieee802.org/16/ipr/patents/notice	statement "IEEE standards may include the known use receives assurance from the patent holder or applicant andatory and optional portions of the standard." Early ght be relevant to the standard is essential to reduce the ease the likelihood that the draft publication will be ir@wirelessman.org> as early as possible, in written or patent application) might be incorporated into a draft Group. The Chair will disclose this notification via the

Table of Contents

1	SUMMARY OF CONTRIBUTION	3
2	MULTIPATH FADING MODEL COMPARISON	
2.1	MEAN AND RMS DELAY SPREAD	4
2.2	CHANNEL COHERENCE BANDWIDTH EVALUATION	5
2.3	CHANNEL COHERENCE TIME EVALUATION	8
2.3.1	Conventional channel coherence time evaluation	8
2.3.2	Channel coherence time evaluation using Doppler spectra and [6]	9
2.3.3	B Doppler spectrum used in our evaluation	10
2.3.4	Coherence time calculation result using Doppler spectra	10
3	REFERENCES	11
4	ACKNOWLEDGEMENTS	12
5	APPENDIX	12
5.1	MULTIPATH FADING MODEL PARAMETERS	12

Comparison of multipath channel models for IEEE 802.16j Relay Task Group

1 Summary of contribution

In the last meeting, there have been a number of channel model contributions. We will need to make a decision on which channel model to adapt. Before a decision can be reached, we need to understand what each channel model provides. Hence, in this contribution, we would like to characterize the following multipath channel models: 802.16[3], ITU[2] and WINNER[1] for a 5MHz channel bandwidth with OMNI antennae. For details regarding the channel parameters, refer to 5.1. Evaluations on new channel model will be added as we receive more channel model proposals.

The purpose of this document is not to choose a channel model. Rather, we aim to provide analytical information on each model such that the task group can use it to arrive at a decision. The channel model that best reflects the propagation environment for 802.16j shall be chosen.

802.16 multipath models are derived from the SUI models[7] and there are 6 of them with each one coming from a different propagation environment. Hence, we would like to refer to the six multipath channels as 802.16 SUI 1 to 6. The measurements that are performed to derive these channels are done at 1.9GHz and 2.5GHz in outdoor sub-urban environment in the US. For details regarding this model, please refer to [3] and [7]. From our analysis, we found that the higher the channel number is, the worse the channel propagation environment. In fact, the RMS delay spread is worst with SUI channels than the other models.

Details on ITU multipath models can be found in [2]. Again, they have a total of 6 multipath channels with each one representing a different propagation environment which can be indoor, outdoor, indoor to outdoor, slow moving, fast moving, small or large cell sizes in mostly urban environments. Our analysis shows that ITU multipath channels provide the second worst RMS delay spread. However, ITU channels have deeper fades than SUI channel models and therefore provide a harsher propagation environment than the SUI channels.

Details on WINNER multipath channel models can be found in [1]. We have chosen 4 WINNER multipath channel models to analyze and they reflect the propagation environment of small cells in Manhattan like city environment. Due to the small cell sizes, WINNER channels have smaller delay spread and reflect a more benign propagation environment.

To simulate the effect of MS movement, Doppler spectra are added to the multipath channel model. 802.16 and WINNER propose the same Doppler spectrum while ITU proposes the flat and classical Doppler spectra for the various propagation environment. From our analysis, the classical Doppler spectrum provides the shortest coherence time while the 802.16 Doppler spectrum provides the longest coherence time for MS traveling at the same speed.

2 Multipath fading model comparison

The following parameters for each multipath channel model are evaluated in the comparison:

- 1. mean and rms delay spread. This information can be used as a reference to design the equalizer length for single carrier system and cyclic prefix duration for OFMD systems;
- 2. channel coherence bandwidth using its spaced-frequency correlation function. This parameter answers the question of how selective the channel can be;

3. channel coherence time using various Doppler spectrums. This parameter answers the question of how fast the channel can change.

2.1 Mean and RMS delay spread

Mean delay spread provides information on the mean value of delay spread expected for a certain channel RMS delay spread provides the delay spread variations. From [3], the RMS delay spread (τ_{ms}) is:

$$au_{\mathit{rms}}^2 = \sum_{i} P_{j} au_{j}^2 - \left(au_{\mathit{mean}} \right)^2$$
 where

- $au_{\it mean} = \sum_j P_j au_j$ is the mean delay spread
- τ_j is the delay of the jth delay component and P_j = (power in the jth delay component) / (total power of all components).

Using the above definition, the mean and RMS delay spread of the channels can be found in Table 1. WINNER channel models provide the smallest RMS delay spread while 802.16 SUI channels provide the worst RMS delay spread.

Table 1. Mean and RMS delay spread of 802.16 SUI, ITU and WINNER channel profiles

Channel Type	Mean delay	RMS delay
	spread (υs)	spread (υs)
802.16 SUI channel 1 (Terrain Type A: Hilly terrain with moderate-to-heavy tree densities)	0.0208	0.1105
802.16 SUI channel 2 (Terrain Type A: Hilly terrain with moderate-to-heavy tree densities)	0.0548	0.2029
802.16 SUI channel 3 (Terrain Type B: Intermediate path-loss condition)	0.1529	0.2637
802.16 SUI channel 4 (Terrain Type B: Intermediate path-loss condition)	0.7909	1.2566
802.16 SUI channel 5 (Terrain Type C: Flat terrain with light tree densities)	1.5993	2.8418
802.16 SUI channel 6 (Terrain Type C: Flat terrain with light tree densities)	1.9268	5.2397
ITU Indoor Office Environment Channel A	0.0245	0.0370
ITU Indoor Office Environment Channel B	0.0675	0.0992
ITU Outdoor to Indoor and Pedestrian Environment Channel A	0.0144	0.0460
ITU Outdoor to Indoor and Pedestrian Environment Channel B	0.4091	0.6334
ITU Vehicular Environment (High Antenna) Channel A	0.2544	0.3704
ITU Vehicular Environment (High Antenna) Channel B	1.4981	4.0014
WINNER model B5A for (BS↔RS, LOS) and (RS↔RS, LOS)	0.0104	0.0406

WINNER model C2 for (BS↔RS, NLOS), (RS↔MS, NLOS), and (RS↔RS, NLOS)	0.2992	0.3130
WINNER model B1 LOS for (RS↔MS, LOS)	0.0141	0.0198
WINNER model B1 NLOS for (RS↔MS, NLOS)	0.1011	0.0947

2.2 Channel coherence bandwidth evaluation

The channel coherence bandwidth refers to the channel bandwidth where the channel responses are similar. Frequency selective channels have small coherence bandwidth and flat channels have wider coherence bandwidth. From 14.5.1 of [6] and using the tap delay channel model, the lowpass impulse response for a channel can be written as

$$c(\tau;t) = \sum_{n=-\infty}^{\infty} c_n(t) \delta(\tau - n/W)$$
 Equation 1

where *W* is the system sampling rate. The corresponding time-variant Fourier transfer is

$$C(f;t) = \sum_{n=-\infty}^{\infty} c_n(t)e^{-j2\pi f n/W}$$
 Equation 2

To investigate the frequency selectivity of a channel, we would analyze the autocorrelation of the channel over frequency defined in 14.1.1 of [6]. Hence, the autocorrelation function of C(f;t) where f is the frequency variable can be defined as

$$\phi_C(f_1, f_2; \Delta t) = \frac{1}{2} E[C^*(f_1; t)C(f_2; t + \Delta t)]$$
 Equation 3

Since we are interested in the frequency selectivity of an instance of the channel, $\Delta t = 0$. Let $\Delta f = f_1 - f_2$, we have

$$\begin{split} \phi_{C}(\Delta f) &= \frac{1}{2} E \Bigg[\sum_{n=-\infty}^{\infty} c_{n}^{*}(t) e^{j2\pi f_{1}n/W} \sum_{m=-\infty}^{\infty} c_{m}(t) e^{-j2\pi f_{2}m/W} \Bigg] \\ &= \frac{1}{2} \sum_{n=-\infty}^{\infty} E \Big(|c_{n}|^{2} \Big) e^{j2\pi (f_{1}-f_{2})n/W} = \frac{1}{2} \sum_{n=-\infty}^{\infty} E \Big(|c_{n}|^{2} \Big) e^{j2\pi \Delta f_{n}/W} \end{split}$$
 Equation 4.

Note that $E(|c_n|^2)$ are the various power profile specified in Table 4 to **Table 9**. Plots of Equation 4 for 802.16 SUI, ITU and WINNER channel models can be found in Figure 1, Figure 2 and Figure 3 respectively. In theory, the larger the frequency separation, the smaller the autocorrelation shall be. WINNER channel models in Figure 3 provide the best approximation to a real multipath channel autocorrelation followed by the ITU channel models in Figure 2. Even though the 802.16 SUI channels are more selective in frequency, the ITU channels generate deeper fades. Hence, ITU channels can provide a harsher propagation environment than the SUI channels.

Figure 1. Plot of Equation 4 (spaced-frequency correlation) for 802.16 SUI channel models

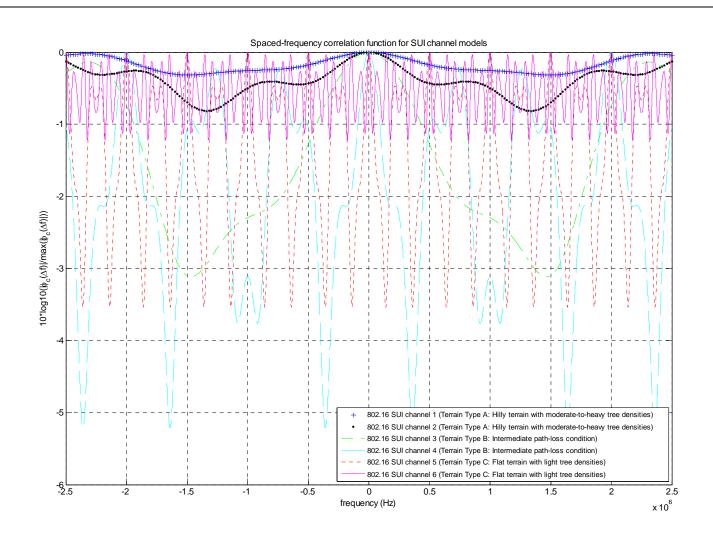


Figure 2. Plot of equation 4 (spaced-frequency correlation) for ITU channel models

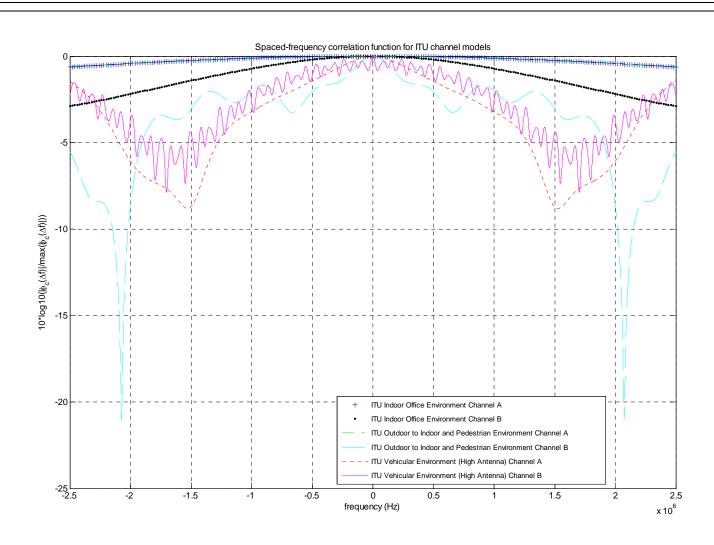
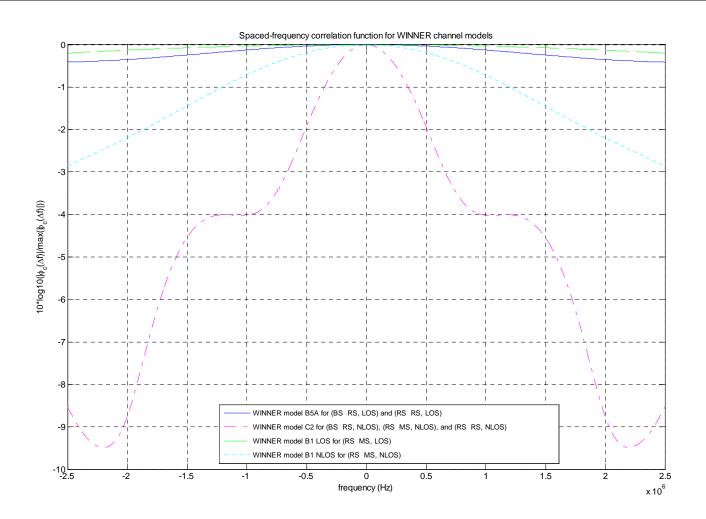



Figure 3. Plot of Equation 4 (spaced-frequency correlation) for WINNER channel models

2.3 Channel coherence time evaluation

2.3.1 Conventional channel coherence time evaluation

Channel coherence time T_C is the time over which the channel may be considered coherent. The definition of coherence time implies that two signals arriving with a time separation greater than T_C are affected differently by the channel. The inverse of the channel coherence time T_C is the minimum channel update rate required for proper channel estimation and equalization, which can be calculated [5] using the Equation 5:

$$T_C = \frac{9}{16 \cdot \pi \cdot f_M}$$
 Equation 5

Table 2 provides a coherence time evaluation for mobiles moving at various speeds using Equation 5. Since each uplink OFDMA slot extends over 3 symbol durations (implying that channel conditions are expected to be constant for 3 symbol durations), 802.16e system may encounter problems for mobile speed of more than 180km/hr since the channel coherence time starts to drop below 3 OFDMA symbol durations.

Table 2. Channel coherence time calculation assuming operating frequency of 3.5GHz

Mobile Speed (km/hr)	$f_M = V/\lambda$ in Hz, V is vehicle speed in m/s and λ is wavelength of RF transmission	Channel coherence time (ms)	Number of OFDMA symbol durations assuming a CP of 1/8
0	0	∞	∞
20	64.8148	2.7625	27.3948
40	129.6296	1.3812	13.6969
60	194.4444	0.9208	9.1313
80	259.2593	0.6906	6.8484
100	324.0741	0.5525	5.4790
120	388.8889	0.4604	4.5656
140	453.7037	0.3946	3.9131
160	518.5185	0.3453	3.4242
180	583.3333	0.3069	3.0434
200	648.1481	0.2762	2.7390
220	712.9630	0.2511	2.4901
240	777.7778	0.2302	2.2828

2.3.2 Channel coherence time evaluation using Doppler spectra and [6]

Channel coherence time measured how fast a channel can change in the time domain. It is mainly a function of the terminal speed and the propagation environment. In general, the fast a terminal moves, the faster its channel condition will change. If we set $f_1 = f_2$ in Equation 3, we will have

$$\phi_C(f;\Delta t) = \frac{1}{2} E[C^*(f;t)C(f;t+\Delta t)]$$
 Equation 6.

From Equation 2, assume that $c_n(t) = x_n(t) \otimes D(t)$ where D(t) is a Doppler filter and $x_n(t)$ is a i.i.d. random process. Equation 6 will become

$$\begin{split} \phi_{C}(f;\Delta t) &= \frac{1}{2} E \Bigg[\Bigg(\sum_{n=-\infty}^{\infty} c_{n}(t) e^{-j2\pi f n/W} \Bigg)^{*} \Bigg(\sum_{m=-\infty}^{\infty} c_{m}(t+\Delta t) e^{-j2\pi f m/W} \Bigg) \Bigg] \\ &= \frac{1}{2} \sum_{n=-\infty}^{\infty} E \Big(c_{n}(t) \cdot c_{n}^{*}(t+\Delta t) \Big) = \frac{1}{2} \sum_{n=-\infty}^{\infty} \Big(E \Big(\big| x_{n}(t) \big|^{2} \Big) \mathcal{S}(\Delta t) \Big) \otimes D(\Delta t) \otimes D^{*}(-\Delta t) \end{split}$$
 Equation 7

where \otimes denotes convolution.

We ignore the contribution due to the small cross terms in Equation 7 when the second and third taps have nonzero K factor in WINNER channel models.

2.3.3 Doppler spectrum used in our evaluation

Three Doppler spectra were considered in our studies: 802.16, ITU classical and flat spectrum.

The 802.16 Doppler spectrum is

$$S(f) = \begin{cases} 1 - 1.72 f_0^2 + 0.785 f_0^4 |f_0| \le 1 \\ 0 |f_0| > 1 \end{cases} \text{ where } f_0 = \frac{f}{f_D}$$
 Equation 8.

WINNRE uses this spectrum as well.

ITU classical Doppler spectrum is

$$S(f) = \frac{1}{\pi f_D \sqrt{1 - (f/f_D)^2}}$$
 Equation 9.

The ITU flat Doppler spectrum is

$$S(f) = \begin{cases} 1 & |f_0| \le 1 \\ 0 & |f_0| > 1 \end{cases} \text{ where } f_0 = \frac{f}{f_D}$$
 Equation 10.

where $f_{_{D}}$ is the maximum Doppler frequency.

2.3.4 Coherence time calculation result using Doppler spectra

The coherence time is defined to be the time when the magnitude of the correlation values in Equation 7 falls below 3dB for the first time compared to its value at time equal to 0. From Table 3, the ITU classical Doppler spectrum provides the shortest coherence time while 802.16 Doppler spectrum provides the longest coherence time. Using Equation 7, the coherence time calculated is longer than the one calculated in 2.3.1. In this case, the MS speed can go up to 240km/h instead of 180km/h before problem arises assuming a cyclic prefix of 1/8.

Table 3. Coherence time calculation using 802.16, Flat and ITU Doppler spectrum

Speed (km/h)	$f_D (=f_M) Hz$	Doppler Spectrum		
		802.16	ITU Flat	ITU Classical
		Channel Co	herence time (ms)	
20	64.8	6.4795	4.6282	3.7026
40	129.6	3.2402	2.3145	1.8516
60	194.4	2.1600	1.5429	1.2343
80	259.3	1.6200	1.1571	0.9257

Page 10 of 16

100	324.1	1.2960	0.9257	0.7406
120	388.9	1.0800	0.7714	0.6172
140	453.7	0.9257	0.6612	0.5290
160	518.5	0.8100	0.5786	0.4629
180	583.3	0.7200	0.5143	0.4114
200	648.1	0.6480	0.4629	0.3703
220	713	0.5891	0.4208	0.3366
240	777.8	0.5400	0.3857	0.3086
260	842.6	0.4985	0.3560	0.2848
280	907.4	0.4629	0.3306	0.2645
300	972.2	0.4320	0.3086	0.2469
320	1037	0.4050	0.2893	0.2314
340	1101.9	0.3812	0.2723	0.2178
360	1166.7	0.3600	0.2571	0.2057
380	1231.5	0.3411	0.2436	0.1949
400	1296.3	0.3240	0.2314	0.1851
420	1361.1	0.3086	0.2204	0.1763
440	1425.9	0.2945	0.2104	0.1683
460	1490.7	0.2817	0.2012	0.1610
480	1555.6	0.2700	0.1929	0.1543
500	1620.4	0.2592	0.1851	0.1481

3 References

- [1] "Final Report on Link Level and System Level Channel Model", IST-2003-507581 WINNER, D5.4 v 1.4, https://www.ist-winner.org/.
- [2] Recommendation ITU-R M.1225, Guidelines for Evaluation of Radio Transmission Technologies for IMT-2000
- [3] IEEE 802.16c-01/029r4: "Channel Models for Fixed Wireless Applications", V. Erceg, et al, 2001-07-16, IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16
- [4] "Definition of terminology used in Mobile Multihop Relay", IEEE 802.16j MMR Contribution, May, 2006
- [5] Rappaport, T.S., "Wireless Communications Principles and Practice", Second Edition 2002, Prentice Hall PTR, Upper Saddle River, NJ.
- [6] John G. Proakis, "Digital Communications", 3rd edition, McGRAW-HILL INTERNATIONAL EDITIONS, 1995.
- [7] D.S. Baum et.al., "Measurements and characterization of broadband MIMO fixed wireless channels at 2.5GHz", Proceedings of ICPWC'2000, Hyderabad, Dec. 2000.

4 Acknowledgements

Hakim Mesiswala of Intel Corp.

5 Appendix

5.1 Multipath fading model parameters

A tap delay line is used to emulate the multipath fading channel. The channel parameters are derived from actual channel measurements. Depending on the K-factor, each tap coefficient is generated from either a Ricean or Rayleigh random variables. 802.16 (derived from SUI), ITU and WINNER multipath fading model parameters are summarized in Table 4 to Table 9. Details regarding the channel models can be found in [1], [2] and [3].

Table 4. 802.16 - SUI channel models

Terrain Ty	pe A: Hilly ter	rain with mode SUI 1	rate-to-heavy t	ree densities
	Tap1	Tap2	Tap3	Unit
Delay	0	0.4	0.9	μs
Power	0	-15	-20	dB
K factor	4	0	0	
Doppler	0.4	0.3	0.5	Hz
Terrain Ty	pe A: Hilly ter	rain with mode SUI 2	rate-to-heavy t	ree densities
	Tap1	Tap2	Tap3	Unit
Delay	0	0.4	1.1	μs
Power	0	-12	-15	dB
K factor	2	0	0	
Doppler	0.2	0.15	0.25	Hz
Terr	ain Type B: In	termediate pat	h-loss conditio	n: SUI 3
	Tap1	Tap2	Tap3	Unit
Delay	0	0.4	0.9	μs
Power	0	-5	-10	dB
K factor	1	0	0	
Doppler	0.4	0.3	0.5	Hz
Terr	ain Type B: In	termediate pat	h-loss conditio	n: SUI 4
	Tap1	Tap2	Тар3	Unit
Delay	0	1.5	4.0	μs

Power	0	-4	-8	dB
K factor	0	0	0	
Doppler	0.2	0.15	0.25	Hz
Terra	ain Type C: Fla	t terrain with lig	ht tree densitie	es: SUI 5
	Tap1	Tap2	Тар3	Unit
Delay	0	4	10	μs
Power	0	-5	-10	dB
K factor	0	0	0	
Doppler	2.0	1.5	2.5	Hz
Terra	ain Type C: Fla	t terrain with lig	ht tree densitie	es: SUI 6
	Tap1	Tap2	Тар3	Unit
Delay	0	14	20	μs
Power	0	-10	-14	dB
K factor	0	0	0	
Doppler	0.4	0.3	0.5	Hz

Table 5. ITU channel models

	Indoor Office Environment						
	Channel A	Channel A (Model No. 1)		Channel B (Model No. 2)			
Тар	Relative Delay (ns)	Average power (dB)	Relative Delay (ns)	Average power (dB)	Doppler Spectrum		
1	0	0	0	0	Flat		
2	50	-3.0	100	-3.6	66		
3	110	-10.0	200	-7.2	66		
4	170	-18.0	300	-10.8	"		
5	290	-26.0	500	-18.0	"		
6	310	-32	700	-25.2	"		

	Out	door to Indoor	and Pedestria	n Environment	
	Channel .	A (Model No. 3)	Channel	B (Model No. 4)	Donnlor
Тар	Relative Delay (ns)	Average power (dB)	Relative Delay (ns)	Average power (dB)	Doppler Spectrum
1	0	0	0	0	Classic

Page 13 of 16

2	110	-9.7	200	-0.9	"
3	190	-19.2	800	-4.9	"
4	410	-22.8	1200	-8.0	"
5	-	-	2300	-7.8	"
6	-	-	3700	-23.9	"

Vehicular Environment (High Antenna)						
	Channel A (Model No. 5)		Channel B (Model No. 6)		Donnler	
Тар	Relative Delay (ns)	Average power (dB)	Relative Delay (ns)	Average power (dB)	Doppler Spectrum	
1	0	0	0	-2.5	Classic	
2	310	-1.0	300	0	66	
3	710	-9.0	8,900	-12.8	66	
4	1,090	-10.0	12,900	-10.0	66	
5	1,730	-15.0	17,100	-25.2	"	
6	2,510	-20.0	20,000	-16.0	66	

Table 6. WINNER model B5A for BS↔RS, LOS) and (RS↔RS, LOS)

Tap index	Delay [ns]	Power [dB]	AoD [°]	AoA [°]	K-factor [dB]
1	0	-0.39	0.0	0.0	21.8
2	10	-20.6	0.9	0.2	
3	20	-26.8	0.3	1.5	
4	50	-24.2	-0.3	2.0	
5	90	-15.3	3.9	0.0	
6	95	-20.5	-0.8	3.6	$-\infty$
7	100	-28.0	4.2	-0.7	
8	180	-18.8	-1.0	4.0	
9	205	-21.6	5.5	-2.0	
10	260	-19.9	7.6	-4.1	

Table 7. WINNER model C2 for (BS↔RS, NLOS), (RS↔MS, NLOS), and (RS↔RS, NLOS)

Tap index	Delay [ns]	Power [dB]	AoD [°]	AoA [°]	K-factor [dB]
1	0	-0.5	0	0	
2	5	0.0	4	4	
3	135	-3.4	-3	7	
4	160	-2.8	-4	10	
5	215	-4.6	-7	21	
6	260	-0.9	8	-45	
7	385	-6.7	10	-75	
8	400	-4.5	17	65	
9	530	-9.0	-8	160	
10	540	-7.8	-8	155	$-\infty$
11	650	-7.4	-4	88	
12	670	-8.4	-7	80	
13	720	-11.0	-9	-90	
14	750	-9.0	-9	-105	
15	800	-5.1	12	8	
16	945	-6.7	-17	45	
17	1035	-12.1	19	50	
18	1185	-13.2	12	-15	
19	1390	-13.7	19	-25	
20	1470	-19.8	21	100	

Table 8. WINNER model B1 LOS for (RS↔MS, LOS)

Tap index	Delay [ns]	Power [dB]	AoD [°]	AoA [°]	K-factor [dB]
1	0	0	0	0	16
2	10	-1.2	-22	-10	9
3	30	-4.4	-12	20	3
4	45	-8.4	-2	-123	
5	65	-13.0	10	-31	$-\infty$
6	85	-15.1	-4	161	
7	105	-16.1	8	-7	

Table 9. WINNER model B1 NLOS for (RS↔MS, NLOS)

Tap index	Delay [ns]	Power [dB]	AoD [°]	AoA [°]	K-factor [dB]
1	0	-1.25	4	0	9
2	10	0	40	25	6
3	40	-0.38	-10	29	
4	60	-0.10	48	-31	
5	85	-0.73	-36	37	
6	110	-0.63	-40	21	
7	135	-1.78	-26	13	
8	165	-4.07	-28	117	
9	190	-5.12	-12	21	
10	220	-6.34	-14	1	
11	245	-7.35	14	15	$-\infty$
12	270	-8.86	8	9	
13	300	-10.1	-24	19	
14	325	-10.5	-14	1	
15	350	-11.3	-22	-13	
16	375	-12.6	2	11	
17	405	-13.9	8	-1	
18	430	-14.1	-2	43	
19	460	-15.3	-10	33	
20	485	-16.3	-54	-19	