Document Number:		
IEEE 802.16.1mp-00/09		
Title:		
Media Access Control Layer Proposal for the 802.1	6 Air Interface Specif	fication
Date Submitted:		
2000-03-07		
Source:		
Glen Sater	Voice:	480-441-8893
Motorola Inc.	Fax:	480-675-2116
8220 E. Roosevelt Street, M/D R1106	E-mail:	p21661@email.mot.com
Scottsdale, AZ 85257		•
Co-Contributors		
See following page.		
Venue:		
802.16 Session #6, March 6-10, 2000, Albuquerque	, NM, USA.	
Base Document:		
IEEE 802.16mc-00/09 (/http://www.ieee802.org/16	/mac/contrib/802161	<u>mc-00_09.pdf</u>)
Purpose:		
-	v of the submission II	EEE 802.16.1mc-00/09, "Media Access Control Layer
Proposal for the 802.16 Air Interface Specification"	•	
Notice:		
This document has been prepared to assist the IEEE	802.16. It is offered	as a basis for discussion and is not binding on the
contributing individual(s) or organization(s). The m	aterial in this docume	ent is subject to change in form and content after further
study. The contributor(s) reserve(s) the right to add,		
Release:		
The contributor acknowledges and accepts that this	contribution may be	made public by 802.16.
IEEE Patent Policy:	2	1 2
2	A Dalian which is as	fourth in the IEEE CA Stondards Deard Dularus
The contributors are is familiar with the IEEE Pater	•	•
		EEE standards may include the known use of patent(s),
	1	nion of the standards-developing committee and provided the
implementing the standard "	it will license applic	ants under reasonable terms and conditions for the purpose of

implementing the standard."

IEEE 802.16.1 MAC Proposal

March 6-10, 2000 Albuquerque, NM

Glen Sater, Karl Stambaugh	Motorola
Arun Arunachalam, George Stamatelos	Nortel Networks
Farid Elwailly, Jeff Foerster, Jung Yee	Newbridge
Scott Marin, Bill Myers	SpectraPoint
Leland Langston, Wayne Hunter	Crosspan, A Raytheon Company
Phil Guillemette	SpaceBridge
Chet Shiralli	Vyyo
George Fishel	Communications Consulting Services
Ray Sanders	CircuitPath Networks Systems
Moshe Ran	TelesciCOM
Andrew Sundelin	iSKY

Very Quick Overview Changes since last Proposal MAC Evaluation Criteria Conclusions

IEEE 802.16.1 MAC Proposal

Very Quick Overview

Quick Overview

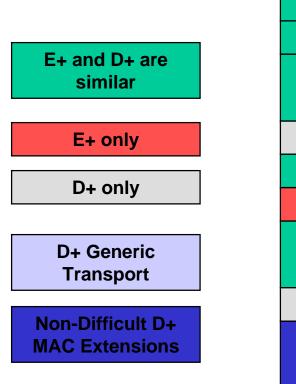
- Point to multi-point MAC protocol
 - Upstream
 - Time divided into continuous stream of mini-slots
 - Contention-based access for latency tolerant applications
 - Reservation-based access for low-latency applications
 - Polling-based access for variable-rate applications
 - Message formats allow efficient scheduling of different message types
 - Supports fragmentation, concatenation, and payload header suppression
 - MAC User Data Formats
 - Variable-length MAC PDU
 - ATM cell (with header suppression) MAC PDU
 - Generic User Data PDU (*new*)
- Full set of MAC management messages
 - Network access, entry, and ranging
 - Upstream bandwidth allocation
 - Dynamic connection creation/modification/deletion

Quick Overview (cont.)

- Service Flows
 - Provides mechanism to manage upstream and downstream QoS
 - Integral to bandwidth allocation process (using mini-slots)
 - Multiple service flows per SS
 - each can have a different set of QoS parameters
- Upstream controlled by variety of scheduling services
 - Best Effort
 - Polling
 - Unsolicited Grant
- QoS Parameters used in conjunction with scheduling services
 - Provides ability to bound delay and jitter
 - Specifies bandwidth
- Scheduling algorithms not defined by the MAC

IEEE 802.16.1 MAC Proposal

Changes to the Proposal Since Working Group Session #5


Differences Since Session #5

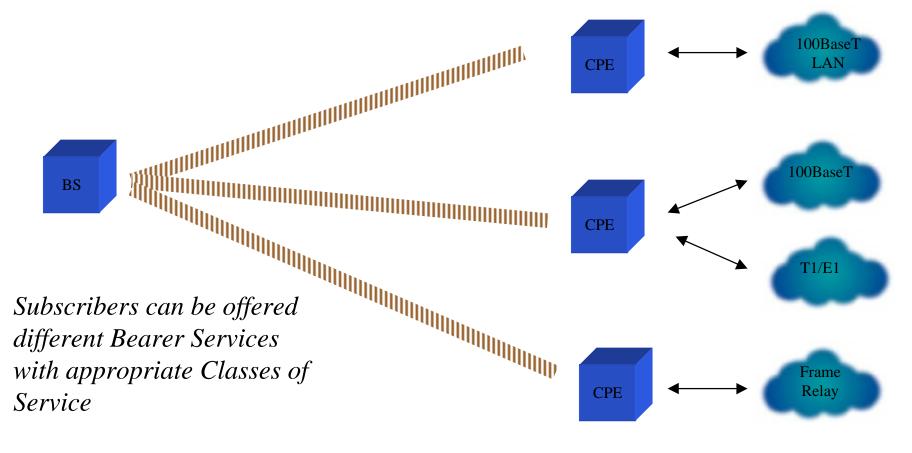
- Added a generic payload mode
 - Allows vendor-specific payload types and convergence processes
 - Alternative method to ATM adaptation
- Simplified the ATM cell PDU format
 - Less implementation complexity
- Added ATM classifiers ala the Ethernet/802.3 classifiers
 - Completes the MAC Service Definition
- Expanded upstream burst profiles to 3 pairs
 - Burst profiles can be targeted to CPE or service type
 - Can support three levels of adaptive FEC coding in the PHY
- Make the concatenation header optional
 - Tradeoff of robustness versus header efficiency

Differences Since Session #5 (cont.)

- Add power control bits to the User PDU message formats
 - Provides additional BS control of CPE Tx Power
 - Works in conjunction with standard maintenance ranging process
 - Caveat: can only be used for active, symmetric traffic
- Added a new Extended Header that only supports UGS synchronization (w/o the PHS index)
 - Minimize bandwidth utilization for ATM CBR traffic
- Added the Dynamic Channel Change message
 - Allows CPE to be moved among different channels
 - Ensures services are maintained during channel change
 - e.g., UGS begins on the new channel before moving the CPE to that channel

A Quick Comparison

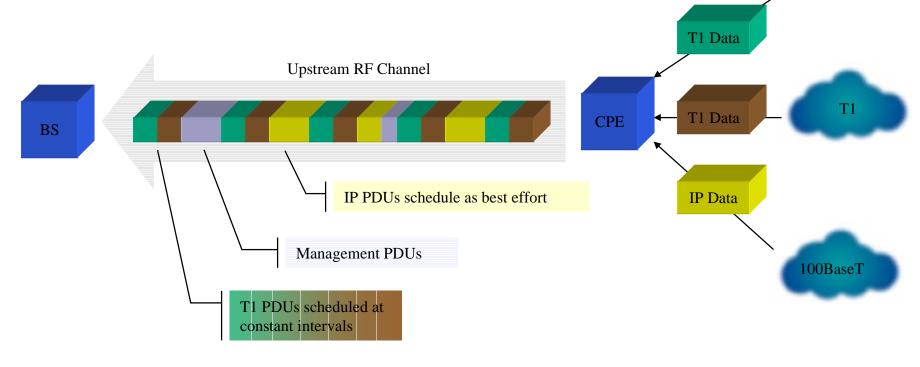
Registration				
TDM, Frame	Packets	TDM		
АТМ	Concat. hdr			
Header	Concatenation	DS0		
compression	Fragmentation	compression		
Extended header				
Security				
ARQ				
Adaptive	Request/grant/	Contention		
Polling	piggyback	Resolution		
MPEG framing				
TDD	FDD	DL-Map		
		H-FDD		


IEEE 802.16.1 MAC Proposal

MAC Evaluation Criteria

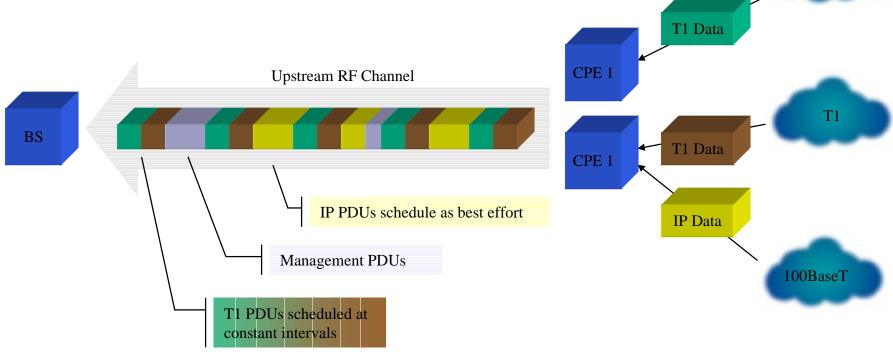
- Meets System Requirements
- Mean Access Delay and Variance
- Payload and Bandwidth Efficiencies
- Simplicity of Implementation/Low Complexity
- Scalability
- Service Support Flexibility
- Robustness
- Security
- Maturity
- Sign On Process
- Adequacy of Management Functions
- Ability to Work with PHY Variations
- Extensibility

Bearer Services - A Simple Example


- Each RF Channel supports multiple CPEs
- Each CPE supports multiple subscribers

IEEE 802.16.1mp-00/09

Bearer Services - Service Flows


- Key to providing different services
- Establishes a "virtual circuit" for each service (using a SID)

T1

Bearer Services - Service Flows

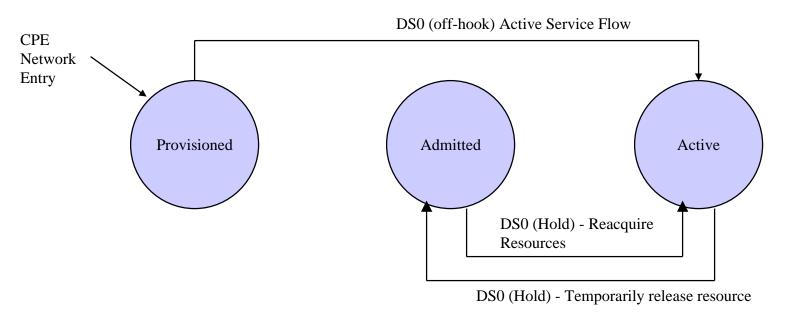
- Service Flows are unique
 - across CPEs
 - across Subscribers

T1

Bearer Services - PDU Formats

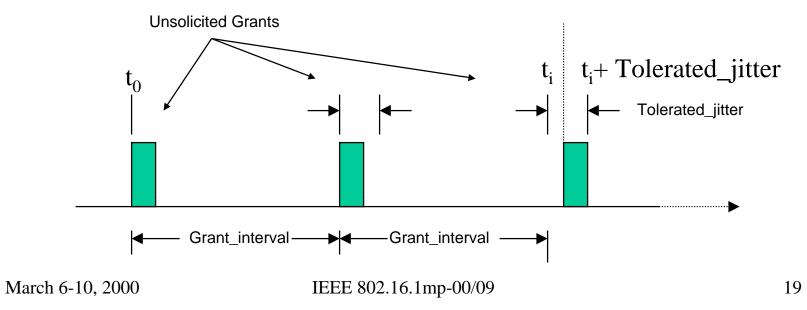
- 802.3/Ethernet
 - Direct, native support for IP-based protocols
 - Fast, efficient
 - No convergence process required
- ATM with Adaptation Layers
 - Chosen to support leased-line services
 - Existing standards by the ITU and ATM Forum
 - DS1, E1, Frame Relay, ...
 - No need to develop new convergence process
 - Uses proven technologies

Bearer Services - Scheduling and QoS


Supports different types of services using the scheduling and QoS parameters

Application	Service Class	MAC	MAC
		PDU Type	Scheduling
Circuit	CBR	ATM/AAL1	Unsolicited Grant
Emulation			Service
Web Browsing	UBR	802.3/Ethernet	Best Effort
VoIP	CBR	802.3/Ethernet	UGS with
			Activity Detection
Frame Relay	CBR	ATM/AAL5	Unsolicited Grant
			Service
	VBR	ATM/AAL5	Real Time Polling
Streaming	VBR	802.3/Ethernet	Real Time Polling
Video			

- Three-tiered Service Flow approach
 - Provisioned known to both BS and CPE
 - Admitted Resources reserved but not used
 - Active Resources committed
- Why provision without use?
 - To allow quick establishment of service flows
- Why have an admitted state?
 - To allow resources to be temporarily allocated to other services (but can be resumed at any time).


Bearer Services - Service Flows (cont.)

- Two-Phase Activation Model
 - Conserve network resources until end-to-end connection has been established
 - Fast policy checks and admission control

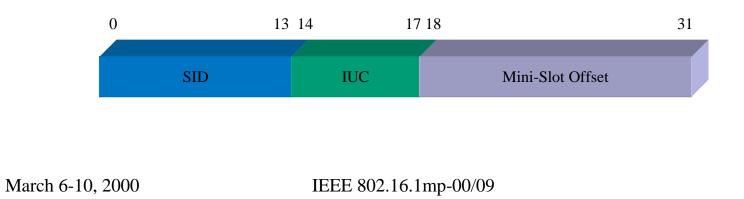
Mean Access Delay and Variance - Jitter

- Access delay is tightly controlled:
 - For UGS, each grant must start within the tolerated jitter parameter
 - Ideal interval start given by: $t_i = t_0 + i * Grant_Interval$
 - Actual interval start, t' must meet: $t_i \le t' \le t_i + Tolerated_jitter$
 - Timing resolution in uS; accuracy to BS master clock
- With FDD PHY, no latency introduced by sharing of RF Channel
 - TDD introduces latency when controlling jitter

- Grant allocation will not be perfect
 - Small phase errors occur over time causing slip
- MAC must take this into account
 - method for detecting and requesting additional bandwidth required
 - UGS Queue Indicator (2 byte extended header)
 - BS allocates up to 1% additional bandwidth to Service Flow

- Direct support for Ethernet/802.3 Frames
 - No adaptation process required
 - Payload Header Suppression
 - eliminates repetitive information
 - defined in a generic manner for widest possible use
- Direct support for ATM
 - CES and other services do require adaptation
 - Simpler to use existing technologies and standards than redefining specialized adaptation layers processes

- Extended Headers
 - Only carries additional functionality when needed
 - No need for separate messages
 - example: piggy-back requests can be integrated with fragmentation, where there are most needed
 - example: encryption key sequence carried in the security header, where it is absolutely required
 - Designed for robust operation while minimizing bandwidth usage
 - can be directly implemented with hardware


Static comparisons can be misleading...

MAC	Non	Fragmented Packet	Fragmented Packet w/Security
Comparison	Fragmented		
	Packet		
Ensemble Proposal			
- Header	6 bytes	6 bytes	6 bytes
- Piggy-Back Request		6 bytes	6 bytes
- Key Exchange Msg			11+9 bytes at some periodic
			rate
Total	6 bytes	12 bytes	12 bytes + 20 bytes at some
			periodic rate
This Proposal			
- Header	6 bytes	6 bytes (frag. Header)	6 bytes (frag. Header)
- Piggy-Back Req		6 bytes (frag. EH)	6 bytes (frag. EH)
- Key Exchange			0 bytes (included in EH)
Total	6 bytes	12 bytes	12 bytes

...dynamic protocol operation must also be taken into account.

Payload and Bandwidth Efficiencies

- Management messages designed for efficiency
 - originally developed for bandwidth-limited environment
 - carried directly over MAC w/o convergence process
 - TLVs used for low-rate management functions...
 - ...high-rate functions designed for hardware implementation; e.g., MAP message entries:

Simplicity of Implementation/Low Complexity

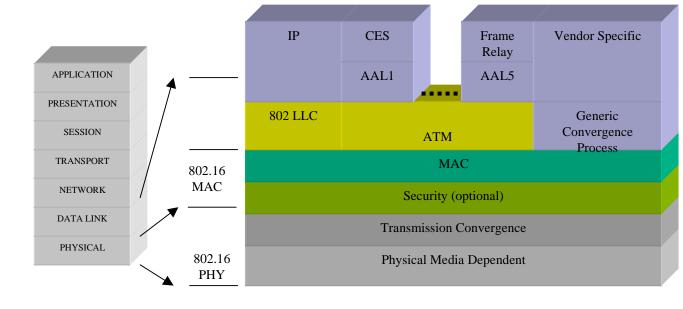
- Implementations of very similar MACs exist today
 - Key functions of MAC are designed to be implemented in hardware
 - yields best possible performance
 - requires a single CPE ASIC
 - Other functions implemented in software for flexibility
 - Comprehensive used of TLVs

Simplicity of Implementation/Low Complexity

- Proposal is large but not complex
 - it is a *complete* MAC definition
 - No convergence processes need to be defined
 - Includes provisioning and other definitions
 - required by Service Providers and Operators to deploy complete solutions
 - the details are there, for example:
 - State transition diagrams are defined for all transactions between the BS and CPEs
- Could start developing solutions today

Simplicity of Implementation/Low Complexity

- MAC allows centralized scheduling
 - Vendor implements appropriate algorithms
 - CPEs not involved in scheduling process
- Simpler than distributed schemes
 - CPEs must perform scheduling when upstream grants are aggregated in a single burst
 - Weighted queuing algorithms are difficult to implement
 - Fewer inter-operability issues
 - Less chance that CPE schedulers will conflict

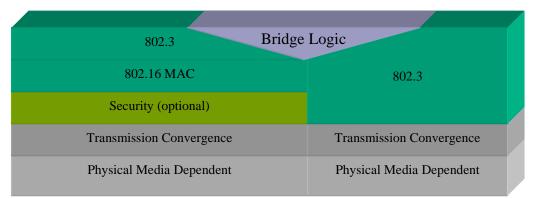

Scalability (Operational Bandwidths)

- Similar MAC implementations currently scale from
 - 3 Mbps upstream and 30 Mbps downstream
 to
 - 41 Mbps upstream and 40 Mbps downstream
- Ensuring scalability...
 - decouple mini-slot granularity from symbol rate
 - flexible MAP message generation
 - centralized scheduling
 - simple CPE MAC access modes

Scalability (Connections and Services)

- 8192 unique Service Flows per domain
 - No restrictions on Service Flows per CPE or Subscriber
- Similar MAC implementations support 1500 CPEs per domain
- Ensuring scalability...
 - No address space limitations
 - Generic scheduling mechanisms
 - can support ATM service classes or specialized service classes using the generic PDU format

- Flexible Protocol Stack
 - Directly supports IP
 - Supports ATM and Service over ATM
 - Generic Convergence Process for special cases


March 6-10, 2000

IEEE 802.16.1mp-00/09

- Interworking functions
 - MAC does not require a bridge, router, or switch
 - ... but does support their use.

802.16 MAC can carry the 802.3 PDUs but it does not require the use of a bridge at either the router or CPE

- Tightly controlled initial ranging process
 - Allows unsynchronized CPEs to enter network w/o interfering with existing CPEs
- Well-defined maintenance ranging process
 - Slow loop ranging occurs < every 2 seconds</p>
 - Power, time, and frequency offset
 - MAC headers contain CPE Tx power ranging bits
 - Allows quick power control loop for active traffic
 - Used to handle quick fade conditions (rain, dust, ...)

- MAC Headers protected by 16-bit HCS
- Ethernet frames protected by 48-bit CRC
- Fragments carry...
 - First/Middle/Last indication
 - Sequence count
 - 16-bit HCS and 48-bit CRC
- Key sequence count for encryption carried with payload
 - prevents encryption from getting out of sync

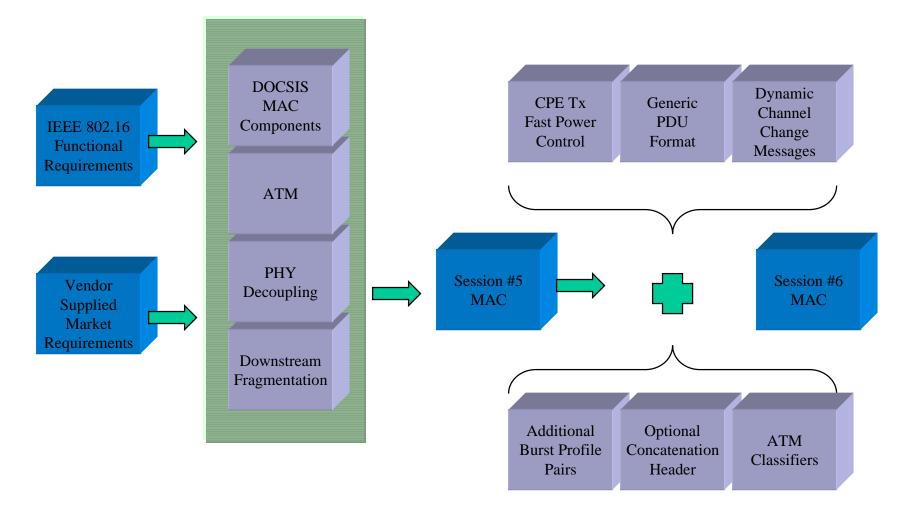
- Why carry the CRC on MAC Header?
 - Only erred MAC message is deleted
 - Hardware need only store MAC message it is currently receiving
- But E+ has CRC in PHY TDU
 - TDU (with no ARQ) may contain parts of multiple MAC messages
 - Part and/or whole MAC messages in erred TDU are dropped
 - Additional coupling between MAC and PHY

- Different Services require different FEC
 - Examples:
 - UDP packets get lower FEC
 - ATM carrying CES get higher FEC
 - Implemented with 3 pairs of data grants
 - Scheduler can apply as needed
- Feature can not be leveraged if different services are carried in the same burst

- Loss of single CPE does not affect network
 CPE re-enters network using initial ranging
- Selectable Ranging Backoff Start and End
 - Allows for optimal contention intervals based upon number of CPE
 - Minimizes network entry time when large number of CPE attempting to re-enter network

Robustness and Link Failure

- Handling PHY Errors at the right Layer
 - Errors in MAC header or extended header
 - Header Check Sum (HCS) detects error
 - MAC message and payload dropped
 - Errors in MAC payload carrying Ethernet/IP
 - Ethernet CRC detects error
 - MAC payload dropped (extended header kept)
 - Errors in MAC payload carrying ATM or generic payload
 - MAC payload passed to higher layer


Robustness and Spectrum Management

- Dynamic Channel Change Message
 - Used to move a CPE among different channels
 - Upstream, Downstream, or both at same time
 - Ensures QoS needs met
 - e.g., grants are generated on new channel before CPE switches
 - Applications
 - Load balancing e.g., different modulations on different channels
 - CPE movement within a sector
 - when additional channels are added
 - when sector is divided into small partitions (90° to 30°, etc.)

- Authentication
 - Uses Public/Private Keys and X.509 certificates to authenticate BS and CPE
- Payload Encryption Process
 - 56-bit DES in CBC Mode¹
 - Cyphertext errors don't propagate in plaintext
 - Not coupled to the PHY layer
 - Strongest conventional block cipher mode
 - Equivalent speed to all block cipher modes

¹ B. Schneier, *Applied Cryptography*, Wiley & Sons, 1996

Maturity - The Proposal Evolution

March 6-10, 2000

IEEE 802.16.1mp-00/09

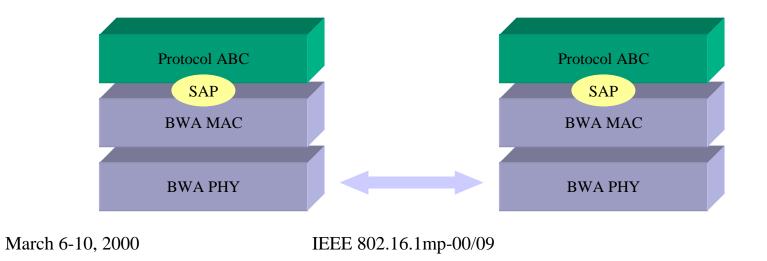
Maturity - Benefits of This Approach

- Based heavily on the DOCSIS 1.1 MAC
 - Leverages cable modem MAC technology
 - ...but is *not* a cable modem solution
- What makes it mature?
 - built upon existing technology
 - that has undergone extensive testing
 - multiple, independent low-cost implementations
 - fielded in large systems
 - continual improvement: on-going Change process
 - Academic/technical research (modeling, etc.)

Sign-On Process

- Initial Ranging
 - Special contention intervals are used
 - prevents collisions with CPEs already on the network
 - ranging process achieves CPE timing and power synchronization
 - CPE burst characteristics are adjusted before allowed to register
- All timing is derived from the BS
 - No timing source required at the CPE
 - SAP definitions to allow timing derivation to upper protocol layers
- Fully automated sign-on process reduces operator burden
 - Definition of the CPE/network provisioning process
 - CPE authentication
 - Service and QoS authentication and authorization
 - Centralized access control

Adequacy of Management Functions

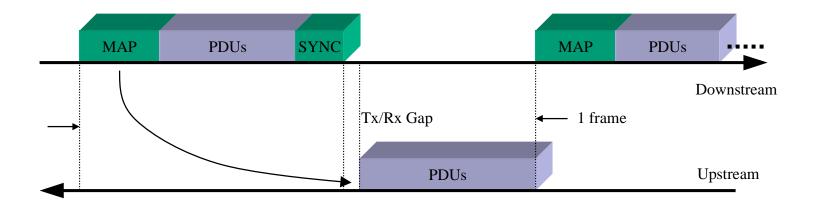

- Complete set of Management Functions
 - Ranging (initial and maintenance)
 - Bandwidth Allocation Management
 - Connection and QoS Management
 - Dynamic service flows
 - Spectrum Management
 - Burst profiles for upstream transmissions
 - Dynamic Channel Changes
 - Security Management
 - Complete Encryption Key Management Protocol

Ability to Work with PHY Variations

- MAC/PHY Independence
 - Does *not* require a cable modem PHY
 - MAC is not tightly coupled to the PHY
 - Most PHY parameters are encoded as TLVs
 - allows easy addition and modification of parameters
 - MAC can handle scaling of PHY symbol rates
 - Mini-slot sizing is decoupled from the symbol rate
- Upstream transmission characterized by Burst Profiles
 - Allows each burst to use different parameters
 - Modulation Type (QPSK, 16-QAM, ...), Symbol Rate (5 40 Msps), FEC coding (t and k values)

Extensibility - Generic PDU Format

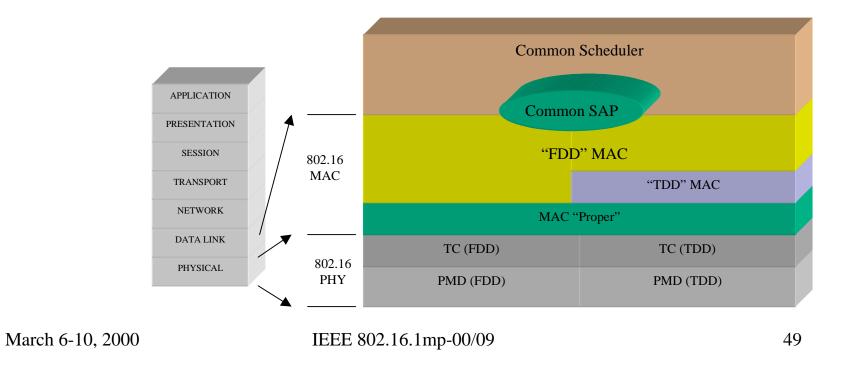
- Uses same MAC header formats, scheduling, etc.
- Delivers PDU between equivalent peers
- Allows vendor-specific algorithms, e.g. TDM
- Only recommended in special cases
 - If it can't be supported with ATM or 802.3/Ethernet
 - Requires new convergence processes to be defined and implemented
 - Requires specialized interoperability testing between vendors


- MAC is minimal; convergence layers complex
 - Convergence layers still to be defined
 - Convergence layer for CES over ATM is complex
 - Convergence layer definitions will significantly increase 802.16 completion time
 - Prediction: manufacturers will use ATM to carry CES to speed introduction
- Better to limit to ATM and IP
 - Generic mode added, but will likely used for specialized or "niche" applications

Extensibility - Encryption Algorithms

- 56-bit DES acknowledged to have limited lifetime, will need new algorithms
 - Changing data encryption algorithm
 - has no impact on overall structure
 - has no impact on operation of the protocol
 - Consistent use of TLVs for key management protocol
 - Flexibility in setting key lifetimes
 - Flexibility in setting key lengths
 - Not coupled to the PHY

Extensibility - Additional PHY Layers


- TDD Support
 - No modification to MAC messaging form or function
 - Requires modification of Scheduler
 - MAP messages still define appropriate upstream burst times
 - Non-transmission upstream interval has no mini-slot definitions
 - MAP transmitted at start of every frame to define upstream sub-frame

IEEE 802.16.1mp-00/09

Extensibility - TDD Support and Scheduling

- TDD introduces additional jitter into the traffic flows
 - Requires larger jitter buffers to handle non-continuous channels
 - Buffer size must scale with split point and data rate
- Scheduler can no longer view channels as continuous set of transmission opportunities: Complicates scheduling algorithms

IEEE 802.16.1 MAC Proposal

Conclusions and Summary

- Supports the functional requirements
 - Multiple classes of services
 - Multiple services per subscriber
 - Multiplexing allows statistical gains
- Uses proven technologies
 - Extensive implementation experience
 - Extensive research
 - academic/commercial
 - History of on-going change process to strengthen the MAC technologies

- Robust and efficient solution
- Well defined
 - A complete solution
 - No undefined convergence layers/processes
- Tailored for hardware implementation
 - Faster operation
- Extensible
 - Can be extended to support different PHYs components and features