Project	IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16
Title	Comment contribution
Date Submitted	2001-08-23
Source(s)	Nico van Waes Nokia
Re :	80216ab-01_06r1
Abstract	Text corresponding to submitted comments on 80216abc-01/01r1
Purpose	Consideration \& decision
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate text contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.
Patent Policy and Procedures	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) http://ieee802.org/16/ipr/patents/policy.html, including the statement "IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair mailto:r.b.marks@ieee.org as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices.

8.3.3.1.5.4 Constellation mapping

8.3.6.3.4.1.3 Permutation Example

This clause is informative only.
For clarity, an example for using the permutation procedure with the UL 2048 mode is given. The relevant parameters characterizing the UL 2048 mode are as follow:

- Number of Sub-Channels: $N_{\text {elements }}=32$
- Number of data carriers in subchannel: $N_{\text {subchannel }}=48$
- Number of carriers in subchannel: $N_{\text {groups }}=53$
- $\left\{\right.$ PermutationBase $\left._{0}\right\}=\{3,18,2,8,16,10,11,15,26,22,6,9,27,20,25,1,29,7,21,5,28,31,23,17,4,24,0$, $13,12,19,14,30\}$

Using the procedure defined in clause [EDITORIAL NOTE: LINK TO 8.3.6.3.4.1.1] does the allocating:
1 The basic series of 32 numbers is $\{3,18,2,8,16,10,11,15,26,22,6,9,27,20,25,1,29,7,21,5,28,31,23,17$, $4,24,0,13,12,19,14,30\}$
2 In order to get 32 different permutation the series is rotated to the left (from no rotation at all up to 31 rotations). For the first permutation (permutationbase ${ }_{s=1}$), we get the following series: 18, 2, 8, 16, 10, 11, 15, 26, 22, 6, 9, $27,20,25,1,29,7,21,5,28,31,23,17,4,24,0,13,12,19,14,30,3$
3 To get an $N_{\text {subchannel }}=48$ length series we concatenate the permutated series 2 times (to get a 64 length series) and take the first 48 numbers only: $18,2,8,16,10,11,15,26,22,6,9,27,20,25,1,29,7,21,5,28,31,23,17$, $4,24,0,13,12,19,14,30,3,18,2,8,16,10,11,15,26,22,6,9,27,20,25,1,29$. [EDITORIAL NOTE: verify need for this step]
4 The concatenation depends on the cell Id (which characterizes the working cell and can range from 0 to 15). For example when using permutation $\mathrm{s}=1$ with $I D_{\text {cell }}=2$

$$
c_{1}[k]=\left\{p_{s}\left[k_{\bmod (32)}\right]+\operatorname{ceil}[(k+1) / 32]-2\right\}_{\bmod (32)} \quad \text { with } k=0,1, \ldots, 52
$$

$c_{1}=\{0,1,7,15,9,10,14,25,21,5,8,26,19,24,0,28,6,20,4,27,30,22,16,3,23,31,12,11,18,13,30,1$, $2,8,16,10,11,15,26,22,6,9,27,20,25,1,29,7,21,5,28,31,23\}$

5 The last step achieves the carrier indices allocated for the specific Sub-Channel with the current Cell Id. Using $\operatorname{carrier}(n, 1))=32 n+c_{1}[n]$, where $n=0,1, \ldots, 52$ the current permutation of subchannel 1 is found:
$\{32,65,103,143,169,202,238,281,309,325,360,410,435,472,480,540,550,596,612,667,702,726,752$, $771,823,863,876,907,946,973,1022,1025,1058,1096,1136,1162,1195,1231,1274,1302,1318,1353$, $1403,1428,1465,1473,1533,1543,1589,1605,1660,1695,1719\}$

