
2001-08-31 IEEE 802.16abc-01/22r1

 0

Project IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16>

Title An ARQ proposal for consideration by TG3/4 MAC group

Date
Submitted

2001-08-31

Source(s) Yigal Leiba
Itzik Kitroser
Runcom Technologies LTD.
2 Ahoma St. 75655, Rishon Lezion
Israel

Voice: 972-3-9528440
Fax: 972-3-9528805
yigall@runcom.co.il

itzikk@runcom.co.il

Re: Call for comments, document IEEE 802.16ab-01/06r1

Abstract This ARQ proposal attempts to incorporate elements from IEEE802.16abc-01/01 and
discussions, comments and contributions that took place within the ARQ Ad-Hoc group. The
document attempts to cover the majority of issues related to ARQ incorporation in the MAC.

Purpose For consideration and improvement by the 802.16 TG3/4 ARQ Ad Hoc Group.

Notice
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on
the contributing individual(s) or organization(s). The material in this document is subject to change in form and
content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained
herein.

Release
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution,
and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name
any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole
discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The
contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent
Policy and
Procedures

The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0)
<http://ieee802.org/16/ipr/patents/policy.html>, including the statement “IEEE standards may include the known
use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-
developing committee and provided the IEEE receives assurance from the patent holder that it will license
applicants under reasonable terms and conditions for the purpose of implementing the standard.”

Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to
reduce the possibility for delays in the development process and increase the likelihood that the draft publication
will be approved for publication. Please notify the Chair <mailto:r.b.marks@ieee.org > as early as possible, in
written or electronic form, of any patents (granted or under application) that may cover technology that is under
consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE
802.16 web site <http://ieee802.org/16/ipr/patents/notices>.

2001-08-31 IEEE 802.16abc-01/22r1

 1

An ARQ proposal for consideration by TG3/4 ARQ Ad-Hoc group
Yigal Leiba
Itzik Kitroser

Runcom Technologies LTD.

1 General
The ARQ mechanism is part of the MAC layer. Its implementation is mandatory, yet it’s use is optional, on a
per-connection basis. The requirement to use ARQ should be specified upon connection creation, but the
decision on which connections ARQ should be used is outside the scope of the air interface specification. When
a connection is designated to support ARQ, transmission of non-ARQ traffic on the connection is not allowed.
The scope of a specific instance of the ARQ state machines, parameters and messages is limited to one
unidirectional unicast MAC connection between the BST and an SS. The feedback information required for the
ARQ algorithm is sent as a MAC management message on the appropriate basic management connection
between that SS and the BST (i.e. it cannot be fragmented), or as piggybacked information on some existing
connection.

2 Block numbering concept
An ARQ block is a uniquely identifiable entity on which the ARQ algorithm operates. Each ARQ block is
identified by an ARQ block number, which is assigned to it by the MAC. ARQ block numbers are assigned in
increasing order, modulo ARQ_MAX_IDX. When the MAC decides to transmit a certain MSDU for the first
time, it assigns it block numbers starting from the current block index, and according to the
ARQ_BLOCK_SIZE parameter, that will determine how many ARQ blocks are contained in the MSDU.
Note that the ARQ numbering is merely a numbering scheme that identifies both the MSDU transmission order,
and the order of the ARQ blocks comprising each MSDU. Note the ARQ block numbering implies nothing on
the order and size of MPDU transmission.

3 Packing and fragmentation interoperation with ARQ

3.1 Motivation
As the packing and fragmentation mechanism purpose is to allow the MAC to efficiently use arbitrary
bandwidth assignments. The BW assignment for any connections while not completely arbitrary is limited by
the granularity imposed by the PHY, namely relatively large FEC block granularity. The current packing and
fragmentation mechanism operates on a byte boundary, i.e. it can fully use any BW assignment to the last byte.
The ARQ scheme described here is specifically designed for minimal interference with the existing packing and
fragmentation mechanism, and preserves its granularity. The proposed ARQ scheme does pose a restriction that
an MSDU fragment should not be smaller than the size of an ARQ block.

3.2 Connection fragmentation state
The current 802.16 MAC creates an MPDU from a single MSDU, a fragment of an MSDU, or packing of
several MSDUs or fragments of MSDUs. Currently, the range of states introduced by the fragmentation and
packing mechanisms is limited by the fact that the connection on which the MSDU is transported is only
allowed to be in one fragmentation state at any given instance. When ARQ, whose operation is based on re-
transmission of erred data, is introduced into the current 802.16 MAC, the concept of a connection being in a
single fragmentation state no longer holds. Instead, once a MSDU is fragmented, it remains fragmented until all

2001-08-31 IEEE 802.16abc-01/22r1

 2

its pieces (i.e. ARQ blocks) have arrived at the receiver. The ARQ blocks should carry enough information in
them so the receiver can place them correctly without the assumption of a single fragmentation state.

3.3 Block numbering operation
To demonstrate how the block numbering works we might look at the allowed formats of MPDUs, and how
ARQ block numbering would work in each. ARQ block numbering is done in the MSDU level, and ARQ
blocks may be split between different MPDUs. As the ARQ algorithm in the receiver has enough information in
each ARQ block to place it correctly regardless of the fragmentation, the split will at most cause the yet un-
transmitted portion of a block to be transmitted in vain. If this situation is to be avoided, the MAC may choose
to always fragment on an ARQ block boundary. I order to support this choice of fragmentation, a parameter
called SEND_FULL_BLOCKS is defined, that instructs the MAC to always fragment on an ARQ block
boundary. Refer to section 7.1 for the format of the ARQ sub-headers.

7 8 9 10 11 12

MSDU #1

13 14 15

MSDU #2

16 17 18 19 20

MSDU #3

Option I: Single MSDU in the MPDU

7 8 9 10 11 12

MPDU #1

13 14 15

MPDU #2

16 17 18 19 20

MPDU #3

Option II: MSDU and MSDU fragments in the MPDU

7 8 9 10 11 12

MPDU #1

13 14 15

MPDU #2

16 1817 19 20

MPDU #5

18

MSDU#1 MSDU#2 MSDU#3

MSDU#1
MSDU#2
FRG#0

MSDU#3
FRG#0MSDU#2

FRG#1

MSDU#3
FRG#1

MPDU #3 MPDU #4

Option III: MSDU and MSDU fragments packed in the MPDU

7 8 9 10 11 12

MPDU #1

13 14 15

MPDU #2

16 1817 19 20

MPDU #3

17
MSDU#1
FRG#0 MSDU#2

MSDU#3
FRG#0

MSDU#3
FRG#1

11

MSDU#1
FRG#1

Figure 1: Packing Fragmentation and ARQ block numbering

4 ARQ state machine
The ARQ scheme is one of type selective repeat, and it uses an independent state machine on each ARQ-
enabled connection. The ARQ scheme utilizes the existing MPDU CRC-32 checksum for detecting erred
MPDUs. The proposed ARQ scheme is specifically designed to be simple and include minimal explicit
messaging between transmitter and receiver.

4.1 Transmitter state machine
At the transmitter the MSDUs are segmented ARQ blocks, and each block is numbered as explained in section
2 above. An ARQ block may be in one of the following four states, not-sent, outstanding, discarded and not-
acknowledged. Any ARQ block begins as not-sent. When it is sent it becomes outstanding for a period of time
termed ACK_WINDOW_DURATION. After that period of time it either is acknowledged and is discarded, or
becomes not-acknowledged. An ARQ block can become not-acknowledged before the

2001-08-31 IEEE 802.16abc-01/22r1

 3

ACK_WINDOW_DURATION period expires if it is implicitly negatively acknowledged (for instance an
ACK for a block having a higher sequence number has been received). An ARQ block may also change from
not-acknowledged to discarded when an ACK message for it is received or after a timeout
ARQ_BLOCK_MAX_DELAY, but setting this timeout is considered outside the scope of the ARQ
specification.
In order to simplify implementation, a parameter MAX_TX_WINDOW is defined. This parameter specifies the
maximum difference between lowest and highest numbered outstanding ARQ blocks at any given time. This
parameter can be varied to trade buffering requirements at the transmitter (and the receiver) for ARQ algorithm
performance (throughput).
The transmitter policy is that if any not-acknowledged ARQ blocks exist, they should be given precedence over
not-sent packets. ARQ blocks that are outstanding or discarded should never be transmitted.
The ARQ block state sequence is graphically shown below.

NS OS NA

DS

Transmit ACk_Window_Size Timer

NACK

ACK
ACK

ARQ_B
lock_

Max_
Dela

y

NS - Not Sent
OS - Outstanding
NA - Not Acknowledged
DS - Discarded

Figure 2: ARQ block states

4.2 Receiver state machine
When an MPDU is received, its integrity is determined based on its CRC-32 checksum. If the MPDU is not
erred, it is unpacked and de-fragmented. The receiver maintains a sliding-window defined by minimum arq
block number state variable and the MAX_TX_WINDOW parameter. When an ARQ block with a number
that falls in the range defined by sliding window is received, the receiver will accept it. ARQ block numbers
outside the sliding window will be rejected as out of order. The receiver should identify duplicate ARQ blocks
(i.e. ARQ blocks that where already received correctly) and discard them.
The sliding window is maintained such that the minimum arq block number variable always points to the
lowest numbered ARQ block that has not been received or has been received with errors. When an ARQ block
with a number corresponding to the minimum ARQ block number is received, the window is advanced (i.e.
minimum arq block number is increased modulo ARQ_MAX_IDX) such that the minimum arq block
number variable points to the next lowest numbered ARQ block that has not been received or has been
received with errors.
If ARQ blocks are being received, yet the minimum arq block number variable has pointed to a specific ARQ
block longer than ARQ_SYNC_LOSS_DELAY, the ARQ algorithm synchronization will be considered lost.
In such a case the window will slide until an ARQ block that has been correctly received is found. The
minimum arq block number variable will point to the next lowest numbered ARQ block that has not been

2001-08-31 IEEE 802.16abc-01/22r1

 4

received or has been received with errors. (Optionally a sync-loss handshake protocol between the transmitter
and the receiver can be added if people believe it is important).
For each ARQ block accepted fully and without errors (including duplicates), an acknowledgment message is
sent to the sender. Acknowledgments may be either for specific ARQ blocks (i.e. contain information on the
acknowledged ARQ block numbers), or cumulative (i.e. contain the highest ARQ block number below which
all ARQ blocks have been received correctly). Acknowledgments should be sent in order of the ARQ block
numbers they acknowledge.
An MSDU is handed to the upper layers when all the ARQ blocks between the lowest numbered ARQ block in
a fragment marked as starting-fragment and the first highest numbered ARQ block in the a fragment marked as
last-fragment have been received without errors.

5 ARQ and scheduling interoperation
ARQ and scheduling interact in the sense that ARQ consumes part of the bandwidth for re-transmissions and
for control messages (ACK). BW requests from SS supporting connections with ARQ will always include the
entire overhead required for the ARQ.
To support GPC terminals a new UIUC value is defined, that identifies bandwidth the scheduler has set aside
for transmission of uplink ARQ information. Here is the addition to table 108 of document IEEE P802.16/D4-
2001.

IE Name Uplink
Interval
Usage
Code

(UIUC)

Connection ID Description

ACK-data 12 unicast Starting offset of burst for ACK data assignment.

Table 1: ACK-data UIUC

Note that as this UIUC also describes the modulation parameters to use for sending the data, it might not be an
adequate solution. A cleaner solution for GPC terminals would be to define an explicit connection for ACK
data.

6 ARQ parameters and connection setup
Connections are set and defined either statically through the configuration file, or dynamically through the
DSA/DSC class of messages. All the ARQ parameters for an ARQ supporting connection are set when the
connection is set up. The transmitter and receiver windows are reset on connection setup.
This section describes the TLV fields for the ARQ algorithm, that are required for both static and dynamic
connection creation methods.

6.1 ARQ_BLOCK_SIZE
Fixing this number considerably simplifies the definition of related messages and bit field and makes
implementation easier. The suggested fixed value is 64 bytes.

6.2 ARQ_MAX_IDX
Sets the size of the group of ARQ block numbers, should be expressed as 2^N – 1 where N is an integer. The
group should be large enough such that no loss of an ARQ block or an ACK will cause any ambiguity. The
number would depend on the ACK_WINDOW_DURATION, the ARQ_BLOCK_SIZE, and the transmission
rate. Taking as a maximum a PHY data rate of 120Mb/S with frame duration of 1mS, and allowing 16mS for
the ACK-WINDOW_DURATION, implies we need N as high as 13 here.

2001-08-31 IEEE 802.16abc-01/22r1

 5

6.3 MAX_TX_WINDOW
From the point of view of performance, it would be ideal if this parameter were set such that the transmitter is
never blocked by transmission and processing delays. It is also required for correct ARQ algorithm operation
that this number is less than half of the ARQ_MAX_IDX parameter. From the point of view of implementation
complexity, this parameter eases implementation by placing a limit on the transmitter (and receiver) buffering
requirements. This parameter is negotiated between the transmitter and the receiver at the connection set-up.
The DSA/DSC message will contain a suggested value for this parameter The DSA-RSP/DSC-RSP message
will contain an acknowledgement of this parameter, or a different suggested value. The lower of the two values
will be used.

Type Length Value Scope
[24/25].? 2 1 – 4095 DSx-REQ

DSx-RSP
Configuration file

Table 2: MAX_TX_WINDOW TLV

6.4 ACK_WINDOW_DURATION
The ACK window duration should account for the transmission and processing time for the forward going
message and for the scheduling, transmission and processing delays for the ACK message. The combination of
all these delays is partly predictable, partly implementation dependent and partly scenario dependant (e.g. the
scheduling part).
The minimal ACK_WINDOW_DURATION is the sum of the times durations listed below,
Tmsg-tx-time: The time it takes to send an ARQ block over the PHY. Depends on the channel and modulation
parameters. Known by the BS at connection setup.
Tair-delay: The time it takes the RF wave to spread, depends on the cell size. The BS at connection setup knows
the maximum value.
Treceiver-process: Implementation dependent receiver processing delay. This is a capability of the receiver.
Tack-scheduling: Scenario or policy dependant scheduling delay for the ACK message in the receiver. This
value could be set by the BS (for a GPC terminal) or by the SS (for a GPT terminal). The longer value should
prevail.
Tack-tx-time: The time it takes to send an ACK message over the PHY. Depends on the format of the ACK
message as well as on channel and modulation parameters. Known by the BS at connection setup.
Tair-delay: The time it takes the RF wave to spread, depends on the cell size. The BS at connection setup knows
the maximum value.
Ttransmitter-process: Implementation dependent transmitter processing delay of the ACK message. This is a
capability of the transmitter.
From the above analysis we may conclude that there are three types of parameters here, 1. Parameters set by the
BS (namely Tmsg-tx-time, Tair-delay, Tack-tx-time). The DSA/DSC or DSA-RSP/DSC-RSP message will
contain the values for these parameters, set by the BS.
2. Parameters negotiated between the BS and the SS (namely Tack-scheduling). The DSA/DSC message will
contain a suggested value for this parameter The DSA-RSP/DSC-RSP message will contain an
acknowledgement of this parameter, or a different suggested value. The larger of the two values will be used.
3. Parameters that are capabilities (namely Treceiver-process, Ttransmitter-process). The DSA/DSC or DSA-
RSP/DSC-RSP message will contain the values for these parameters where the receiver and transmitter each
declare its capability.
When the DSA/DSC handshake is over each party should know all the parameters listed above and each can
calculate the value for the ACK_WINDOW_DURATION as their sum.

2001-08-31 IEEE 802.16abc-01/22r1

 6

The table below lists the relevant TLVs.

Name Type Length Value Scope
Tmsg-tx-time [24/25].?.? 2 0 – 4095

(In microseconds)
DSx-REQ
DSx-RSP
Configuration file

Tair-delay [24/25].?.? 1 0 – 255
(In microseconds)

DSx-REQ
DSx-RSP
Configuration file

Treceiver-process [24/25].?.? 2 0 – 65535
(In microseconds)

DSx-REQ
DSx-RSP
Configuration file

Tack-scheduling [24/25].?.? 2 0 – 65535
(In microseconds)

DSx-REQ
DSx-RSP
Configuration file

Tack-tx-time [24/25].?.? 2 0 – 4095
(In microseconds)

DSx-REQ
DSx-RSP
Configuration file

Ttransmitter-process [24/25].?.? 2 0 – 65535
(In microseconds)

DSx-REQ
DSx-RSP
Configuration file

Table 3: ACK_WINDOW_DURATION releated TLVs

6.5 ARQ_BLOCK_MAX_DELAY
This parameter is useful for cases where delay is bounded, yet ARQ can be helpful (e.g. VOIP). It allows
limiting the delay that ARQ introduces and guarantees that transmission of ARQ blocks that are no longer
useful to the upper layers is avoided.
The BS should set this parameter. The DSA/DSC or DSA-RSP/DSC-RSP message will contain the value for
this parameter as set by the BS.

Type Length Value Scope
[24/25].? 2 1 – 4095 DSx-REQ

DSx-RSP
Configuration file

Table 4: ARQ_BLOCK_MAX_DELAY TLV

6.6 ARQ_SYNC_LOSS_DELAY
This parameter guarantees that the ARQ algorithm does not get stuck indefinitely. The only limitation on this
parameter is that it should be long enough such that a reasonable number of retransmissions are allowed before
this timeout occurs and data is lost in the corrective action taken.
The BS should set this parameter. The DSA/DSC or DSA-RSP/DSC-RSP message will contain the value for
this parameter as set by the BS.

Type Length Value Scope
[24/25].? 2 1 – 4095 DSx-REQ

DSx-RSP
Configuration file

Table 5: ARQ_SYNC_LOSS_DELAY TLV

2001-08-31 IEEE 802.16abc-01/22r1

 7

6.7 SEND_FULL_BLOCKS
This parameter is negotiated between the transmitter and the receiver at the connection set-up.
The DSA/DSC message will contain a suggested value for this parameter The DSA-RSP/DSC-RSP message
will contain an acknowledgement of this parameter, or a different suggested value. The lower of the two values
will be used.

Type Length Value Scope
[24/25].? 2 0= Fragment on ARQ block boundary only

1= No limitation on fragmentation
DSx-REQ
DSx-RSP
Configuration file

Table 6: SEND_FULL_BLOCKS TLV

7 Formats of ARQ related MAC message

7.1 ARQ sub-header
The information conveyed by the ARQ sub-header is a BSN, which stands for Block Sequential Number
referencing the block number of the first ARQ block in the MPDU. As the size of the ARQ block is known, and
it is possible to detect a partial ARQ block (i.e. an ARQ block that was last in the MSDU and therefore its size
is smaller than ARQ_BLOCK_SIZE), this information should suffice to extract all ARQ block numbers in the
MPDU.
When an ARQ sub-header is present with other sub-headers, it is always inserted between the generic MAC
header and the MPDU payload after the grant-management and packing or fragmentation sub-headers.

7.2 ARQ feedback sub-header
This sub-header enables piggybacking of ARQ feedback information elements. When ARQ-feedback sub-
header is present with other sub-headers, it is always the last to be inserted between the generic MAC header
and the MPDU payload. Refer to section 7.4.2 for details.

7.3 Generic MAC header update
The Generic MAC header TYPE field needs to be updated to indicate the presence of the ARQ feedback sub-
header. Here are the updated table that should replace table 4 and table 5 of document IEEE P802.16/D4-2001.

2001-08-31 IEEE 802.16abc-01/22r1

 8

Type Description
0x00 No sub-headers present
0x01 Reserved
0x02 Packing sub-header present
0x03 Reserved
0x04 Fragmentation sub-header present
0x05 Reserved
0x06 Reserved
0x07 Reserved
0x08 ARQ-feedback sub-header present
0x09 Reserved
0x0A ARQ-feedback and packing sub-headers present
0x0B Reserved
0x0C ARQ-feedback and fragmentation sub-headers present

0x0D – 0x3F Reserved

Table 7: Downlink type encoding

Type Description
0x00 No sub-headers present
0x01 Grant management sub-header present
0x02 Packing sub-header present
0x03 Grant management and packing sub-headers present
0x04 Fragmentation sub-header present
0x05 Grant management and fragmentation sub-headers present
0x06 Reserved
0x07 Reserved
0x08 ARQ-feedback sub-header present
0x09 ARQ-feedback and grant management sub-headers present
0x0A ARQ-feedback and packing sub-headers present
0x0B ARQ-feedback and packing and grant management sub-headers present
0x0C ARQ-feedback and fragmentation sub-headers present
0x0D ARQ-feedback and fragmentation and grant management sub-headers present

0x0E – 0x3F Reserved

Table 8: Uplink type encoding

7.3.1 ARQ with no fragmentation and no packing
In this case each MPDU will contain a single MSDU. Knowledge of the BSN, the length of the MSDU
(conveyed in the MAC header) and the ARQ_BLOCK_SIZE parameter enables the calculation of the range of
ARQ blocks contained in the message. The ARQ sub-header position and its contents are shown below.

Generic MAC
Header

ARQ
sub-header Payload (= One MSDU) CRC-32

Figure 3: ARQ sub-header with no fragmentation and no packing

2001-08-31 IEEE 802.16abc-01/22r1

 9

Syntax Size Notes
ARQ_Sub_Header_Format() {
 Reserved 3 bits
 BSN 13 bits Block sequential number for the first ARQ

block in the MSDU
 }

Table 9: ARQ sub-header format with no fragmentation and no packing

7.3.2 ARQ with fragmentation only
In this case each MPDU will contain a single fragment of a MSDU. Fragmentation is NOT guaranteed to be on
an ARQ block boundary, and therefore either the first ARQ block or the last ARQ block (or both) could be
partial blocks. Note that part of the information carried in the fragmentation sub-header is no longer very useful.
We still require the FC field to tell us if this is the first, last or a middle fragment, but the FSN field is
redundant, as we must use the ARQ block numbers for correct fragment placement. We will reuse the FSN bits
carry information about the size of the first ARQ block (that may be partial) in the fragment. Note that a partial
first ARQ block in a fragment will always carry the last bytes of the ARQ block while a partial last ARQ block
in the fragment will always carry the first bytes of the ARQ block (there is an example later).
Knowledge of the BSN of the first ARQ block, the size of the first ARQ block, the length of the MSDU
(conveyed in the MAC header) and the ARQ_BLOCK_SIZE parameter enables the calculation of the range of
ARQ blocks contained in the message. The ARQ with fragmentation sub-header position and its contents is
shown below.

Generic MAC
Header

Fragmentaion and ARQ
sub-header Payload (= One MSDU fragment) CRC-32

Figure 4: ARQ sub-header with fragmentation only

Syntax Size Notes
Fragmentation_and_ARQ_Sub_Header_Format() {
 FC 2 bits Fragmentation Control

Indicates the fragmentation state of the
payload:
00 = no fragmentation
01 = last fragment
10 = first fragment
11 = continuing (middle) fragment

 Reserved 3 bits
 First block length in bytes, minus one 6 bits ARQ_BLOCK_SIZE = 64 bytes
 BSN 13 bits Block sequential number for the first ARQ

block in the MSDU fragment
 }

Table 10: ARQ with fragmentation sub-header format

7.3.3 ARQ with fragmentation and packing
In this case each MPDU may contain multiple MSDU or fragments thereof. In this case as well, fragmentation
is NOT guaranteed to be on an ARQ block boundary, and therefore either the first ARQ block or the last ARQ
block (or both) could be partial blocks. Here as well, part of the information carried in the fragmentation sub-
header is no longer very useful. We still require the FC field but not the FSN field. We will reuse the FSN bits
carry information about the size of the first ARQ block (that may be partial) in the fragment. Note that a partial

2001-08-31 IEEE 802.16abc-01/22r1

 10

first ARQ block in a fragment will always carry the last bytes of the ARQ block while a partial last ARQ block
in the fragment will always carry the first bytes of the ARQ block (see example below).
Each of the packed MSDU or MSDU fragments requires its own ARQ sub-header, as some of them may be
transmissions while other are re-transmissions. Knowledge of the BSN of the first ARQ block, the size of the
first ARQ block, the length of the each MSDU fragment (conveyed in the packing sub-header) and the
ARQ_BLOCK_SIZE parameter enables the calculation of the range of ARQ blocks contained in each part of
the packed message. The ARQ with packing sub-headers position and the contents of an ARQ with packing and
fragmentation sub-header is shown below.

Generic MAC
Header

Packing and ARQ
sub-header

Payload (= One
MSDU or fragment) CRC-32Packing and ARQ

sub-header
Payload (= One

MSDU or fragment)

Figure 5: ARQ sub-header with fragmentation and packing

Syntax Size Notes
Packing_and_ARQ_Sub_Header_Format() {
 FC 2 bits Fragmentation Control

Indicates the fragmentation state of the
payload:
00 = no fragmentation
01 = last fragment
10 = first fragment
11 = continuing (middle) fragment

 Length 11 bits The length in bytes of the MSDU or
MSDU fragment, including the four-byte
Packing_and_ARQ sub-header

 First block length in bytes, minus one 6 bits ARQ_BLOCK_SIZE = 64 bytes
 BSN 13 bits Block sequential number for the first ARQ

block in the MSDU or MSDU fragment
 }

Table 11: ARQ with fragmentation and packing sub-header format

As this case is the most complicated, an example is given here to show how information on the ARQ block
numbers is extracted from the data in the MPDU in a dynamic situation.

2001-08-31 IEEE 802.16abc-01/22r1

 11

7 8 9 10 11 12

MSDU #1

13 14 15

MSDU #2

16 17 18 19 20

MSDU #3

7 8 9 10 11 12

MPDU #1

13 14 15

MPDU #3

16 1817 19 20

MPDU #4

17

MSDU#1
Start
FRG

MSDU#2
Unfragmented

11

MSDU#1
Last
FRG

64 bytes for block 9 (part of MSDU #1)
32 bytes for block 10 (part of MSDU #1)

FC:
Length:
First block:
BSN:

01
160
19
17

FC:
Length:
First block:
BSN:

11
96
63
9

20 bytes for block 17 (part of MSDU #3)
64 bytes for block 18 (part of MSDU #3)
64 bytes for block 19 (part of MSDU #3)
12 bytes for block 20 (part of MSDU #3)

time axis

9

MPDU #2

MSDU#1
Middle
FRG

109

MSDU#3
Start
FRG

MSDU#3
Last
FRG

MSDU#1
Middle
FRG

RetransmissionFirst transmission First transmission First transmission First transmission

MSDUs
to

send

Figure 6: ARQ with packing and fragmentation dynamic example

7.4 ACK messages
In order to function the ARQ algorithm in the transmitter needs feedback from in the receiver in the form
acknowledgment messages for the ARQ blocks that have been received without errors. The feedback
information is sent on the appropriate basic management connection between that SS and the BST (there is one
such connection in each direction). Note that MAC management messages sent on the basic management
connection should not be packed or fragmented.

7.4.1 Stand-alone ACK message
This ACK message may take the format of a stand-alone MAC message. It can signal a cumulative ACK or
several selective ACKs, and it can also hint on not acknowledged ARQ block numbers (NACKs). The format is
shown below.

Syntax Size Notes
ACK_Message_Format() {
 Management Message Type = ? 8 bits
 for (i =1; I <n ; i ++) { Repeat as many times as required
 ARQ_feedback_IE () 16 bits The connection ID being referenced
 }
 }

Table 12: ACK message

2001-08-31 IEEE 802.16abc-01/22r1

 12

Syntax Size Notes
ARQ_feedback_IE () {
 Last_flag 1 bit 0 = More ARQ feedback IE in the list

1 = Last ARQ feedback IE in the list
 Cum_Sel_flag 1 bit 0 = Selective ACK entry

1 = Cumulative ACK entry
 BM_flag 1 bit 0 = Bit-map field does not exist

1 = Bit-map field exists
 If (Cum_Sel_flag == 0) {
 BSN 13 bits Block sequential number for the

acknowledged ARQ block
 }
 else {
 BSN 13 bits Block sequential number for the ARQ

block below which all blocks are
acknowledged

 }
 If (BM_flag == 1) {
 ACK MAP 16 bits Each bit set to one means the

corresponding ARQ block has been
received without errors. The LSB
corresponds to the ARQ block whose
number is the BSN above, an the MSB
relates to the ARQ block whose number is
(BSN + 15) modulo 2^13

 }
 CID 16 bits The ID of the connection being referenced
 }

Table 13: ARQ feedback IE definition

7.4.2 Piggyback ACK
The ARQ feedback can be piggybacked on any connection taking the format of a sub-header.

