#### [Multimedia Broadcast Service in 802.16]

#### Document Number: IEEE C802.16e-04/69r1

Date Submitted: 2004-05-16

Source:

Yong Chang, Geunhwi Lim JunHyuk Song Samsung Electronics Co., Ltd.

Venue:

[Cite the specific meeting and any known agenda details.]

Base Document: None

#### Purpose: Discussion

Notice:

This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release:

The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:

The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <<u>http://ieee802.org/16/ipr/patents/policy.html</u>>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <<u>mailto:chair@wirelessman.org</u>> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <<u>http://ieee802.org/16/ipr/patents/notices</u>>.

#### MBS (Multimedia Broadcast Service) for 802.16

**Samsung Electronics** 

### Contents

- Requirements
- Service Scenario
- General Requirements
- Message based MBS Framework on IEEE802.16e
  - MAC Management Message Formats
  - MAC PDU MBS Payload Format
- Non-message based MBS Framework on IEEE802.16e

# Multimedia Broadcast Service ?

- Efficiency
  - MBS is an efficient mechanism to send multimedia broadcast information.
- Power saving
  - MBS should be provided in both Awake & Idle Mode.
- Mobility
  - MBS should provide seamless connection for mobile SS.
- MBS Zone
  - MBS content may be transmitted to all or some selected MBS zone of the network.
- Security
  - MBS contents may be securely delivered to the only authorized users.

# SS Requirements

- SS shall discover the address of MBS content server.
- SS may use HTTP for MBS information acquisition from MBS server.
- When SS requests for a MBS content, SS should include some fields for the authorization.
- SS shall store Key for MBS and be able to check the validness of the Key.
- Regardless of SS's state, SS shall receive packets for MBS content.
- SS shall determine the zone that the information for a MBS content is valid through.
- SS shall reduce the power consumption for receiving MBS packets.
- SS shall decrypt an encrypted MBS payload by using Key from MBS server and nonce from BS.

# **BS** Requirements

- BS shall provide the information for SS to receive MBS packets regardless of SS's state.
- BSs shall synchronize the transmission of MBS packets to provide the macro diversity reception.
- BS shall encrypt MBS payload by using Key for MBS content from MBS server and nonce.
- BS should generate and distribute nonce for SS to decrypt encrypted MBS packets.

## MBS Content Server Requirements

- MBS content server shall manage MBS information for MBS content.
- MBS content server should use HTTP for MBS information acquisition.
- MBS content server shall perform the authorization and the accounting.
- MBS content server shall manage Keys for MBS content.
- MBS content server shall deliver Key for MBS content to the authorized user.
- MBS content server shall distribute MBS information to BSs.
- MBS content server shall distributes MBS packets to BSs.

### Features

- Macro diversity shall be provided.
  - The transmission shall be synchronized between BSs in the same macro diversity region.
- MBS ID
  - MBS ID is an identifier of MBS content.
  - MBS ID is uniquely determined in a service provider region or in a global region.
- CID for MBS (MBS CID)
  - MBS CID is a kind of transport CID.
  - MBS CID shall be managed and shall not be changed in the macro diversity region.
- MBS zone identifier
  - If MBS zone is changed, MBS ID and its related service information (e.g. security key) may be changed.
  - If MBS zone is changed, SS may be necessary to reaccess a MBS server in the new MBS zone.

### MBS Zone & Diversity

- MBS Zone
  - Area covered by a contents server
  - Same MBS encryption key management
  - Same Multicast IP address/port for the same MBS content
- Diversity Zone
  - Unique CID for a broadcast channel
  - Synchronized BS scheduling



# Message based MBS Framework on IEEE802.16e

**Samsung Electronics** 

# Identifier Mapping

#### MBS Zone identifier = 0x01

| Content Name | MBS ID                                  | Multicast IP<br>Address | MAK ID | BS ID  | MBS CID                                         |
|--------------|-----------------------------------------|-------------------------|--------|--------|-------------------------------------------------|
| CNN1         | 0,00000000                              | 005 04 56 00            | 0x001  | 0x0001 | 0x0100                                          |
|              | 000000000000000000000000000000000000000 | 220.04.00.02            |        | 0x0002 | 0x0200                                          |
| HBO1         | 0×0000010                               | 220 11 128 54           | 0x011  | 0x0001 | 0x0200                                          |
|              | 000000010                               | 230.11.120.34           |        | 0x0002 | MBS CID<br>0x0100<br>0x0200<br>0x0200<br>0x0102 |

#### MBS Zone identifier = 0x02

| Content Name | MBS ID    | Multicast IP<br>Address | MAK ID | BS ID  | MBS CID |
|--------------|-----------|-------------------------|--------|--------|---------|
| CNN2         | 0,0000000 | 225 24 56 25            | 0x020  | 0x0015 | 0x0100  |
|              | 000000000 | 223.04.30.03            |        | 0x0016 | 0x0202  |
| HBO2         | 0x0000011 | 220 11 128 53           | 0×100  | 0x0015 | 0x0206  |
|              | 000000011 | 200.11.120.00           | UX 100 | 0x0016 | 0x0104  |

Assumption : BSs below are located in different macrodiversity regions.

# Service Scenario for MBS Information Acquisition



# Service Scenario for MBS Packet Receiving (I)



# Service Scenario for MBS Packet Receiving (II)

- SS's procedures
  - DCD message indicates the MBS support of BS.
  - SS periodically receives MBS-CFG message.
    - MBS-CFG message includes
    - Scheduling information of MBS packets (frame and MAP information)
    - Next MBS-CFG message transmission time
  - SS checks MBS zone.
  - SS receives MBS packets at the scheduled time
- BS's procedures
  - BS shall configure and send MBS-CFG message by using broadcast CID at pre-configured time.
  - BS shall send MBS packets at pre-configured time.

# MAC Management Message Formats (I)

• DCD channel encoding

| Name        | Type<br>(1 byte) | Length | Value (variable length)        |
|-------------|------------------|--------|--------------------------------|
| []          | []               | []     | []                             |
| MBS support | 154              | 1      | 0 = Not support<br>1 = Support |

# MAC Management Message Formats (II)

# • MBS-CFG

| MBS-CFG_Message_Format() {                    |            |
|-----------------------------------------------|------------|
| Management Message Type = 71                  | : 8 bits   |
| MBS zone identifier                           | : 8 bits   |
| Next MBS-CFG transmission frame offset        | : 9 bits   |
| N_MBS_Configuration                           | : 7 bits   |
| for $(I = 0; I < N_MBS_Configuration; I++)$ { |            |
| MBS_Configuration_IE()                        | : Variable |
| }                                             |            |
| if !(byte boundary) {                         |            |
| Padding nibble                                | : 4bits    |
| }                                             |            |
| }                                             |            |

## MAC Management Message Formats (III)

| MBS_Configuration_Normal_IE() {                             |           |
|-------------------------------------------------------------|-----------|
| MBS Configuration Type = ' $0000$ '                         | : 4 bits  |
| N_MBS_ID                                                    | : 4 bits  |
| for $(I = 0; I < N_MBS_ID; I++)$ {                          |           |
| MBS_ID                                                      | : 32 bits |
| MBS CID                                                     | : 16 bits |
| DIUC                                                        | : 4 bits  |
| start subchannel                                            | : 8 bits  |
| subchannel length                                           | : 8 bits  |
| MBS Cipher Suites Type : 4 bits                             |           |
| if (MBS Cipher Suites Type == '0001' or '0010' or '0011') { |           |
| MAK identifier                                              | : 12 bits |
| MAK sequence number                                         | : 4 bits  |
| }                                                           |           |
| }                                                           |           |
| Physical Frequency                                          | : 32 bits |
| Transmission start frame offset                             | : 8 bits  |
| Transmission frame length : 4 bits                          |           |
| Transmission frame period index                             | : 8 bits  |
| }                                                           |           |

}

# Non-message based MBS Framework on IEEE802.16e

**Samsung Electronics** 

### Contents

- Introduction
- Service Scenario
- Message Changes

## Introduction

• This is a simple approach to provide MBS service with power saving on the minimal change of current specification.

#### **MBS** Information Acquisition Scenario

- Operation
  - If SS is in idle mode, SS transits into awake mode.
  - SS sends a HTTP Request for MBS list to MBS Content Server.
  - MBS Content Server sends a HTTP Response including MBS contents list, which includes some lists of
    - MBS content name
    - Multicast IP addr./port no. (If MBS packets are delivered in IP packet)
    - MBS\_SAID and Cryptographic Suite
    - Etc.



#### Authentication Scenario



### Receiving MBS Packets with Power Saving



# Scheduling Example

- BMAP\_IE indicates the next MBS packet transmission frame.
  - E.g.) In the figure, BMAP\_IE in (i+1)th frame includes a frame offset(is equal to 3)to (i+4)th frame. But, BMAP\_IE in (i+4)th frame includes a frame offset(is equal to 4)to (i+8)th frame.



#### **MBS** Zone Detection

- SS receives MBS-Zone\_IE in every MBS frame.
- When SS detects new MBS zone, SS acquires the MBS information for the zone .



## Specification Change I

- Add new BMAP\_IE() in DL-MAP
  - indicates the next MBS packet transmission frame.

| Syntax                | Size    | Notes                    |
|-----------------------|---------|--------------------------|
| BMAP_IE {             |         |                          |
| Extended DIUC         | 4 bits  | BMAP = 0x05              |
| Length                | 4 bits  | Length = $3 \times nCID$ |
| for(i=0;i< nCID;i++){ |         |                          |
| CID                   | 16 bits |                          |
| Frame offset          | 8 bits  |                          |
| }                     |         |                          |
| }                     |         |                          |

## Specification Change II

- Add new MBS-Zone\_IE() in DL-MAP
  - indicates MBS zones that this BS currently supports

| Syntax                 | Size   | Notes                |
|------------------------|--------|----------------------|
| MBS_Zone_IE {          |        |                      |
| Extended DIUC          | 4 bits | $MBS-Zone_IE = 0x06$ |
| Length                 | 4 bits | Length = nZone       |
| for(i=0;i< nZone;i++){ |        |                      |
| MBS zone identifier    | 8 bits |                      |
| }                      |        |                      |
| }                      |        |                      |

# Specification Change III

- Add new TLV for service flow encodings (section 11.13)
  - MBS Zone Identifier
    - informs of SS that this dynamic service is valid only in the MBS zone represented by this field.

| Туре         | Length | Value               | Scope   |
|--------------|--------|---------------------|---------|
| [145/146].29 | 8      | MBS zone identifier | DSA-RSP |