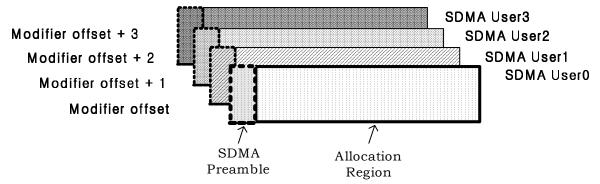
Project	IEEE 802.16 Broadband Wire	less Access Working Group <http: 16="" ieee802.org=""></http:>			
Title	A MAP IE for H-ARQ and SDMA Allocation in AAS Zone				
Date Submitted	2005- 01 03- 26 09				
Source(s)	InSeok Hwang, Jaehee Cho, Seungj Maeng, JangHoon Yang, Hoon Huh, SangHoon Sung, Jaeho Jeon, Soonyoung Yoon Samsung Electronics, Inc.	is91.hwang@samsung.com			
	Ran Yaniv, Tal Kaitz Alvarion Ltd.	ran.yaniv@alvarion.com			
	Dave Pechner, Doug Dahlby, Todd Chauvin ArrayComm Inc.	dpechner@arraycomm.com			
Re:	Call for reply comments (Original Comment # 2189)				
Abstract	A new efficient Normal MAP IE supporting for Hybrid ARQ and SDMA allocation in AAS zone is proposed.				
Purpose	Adoption in IEEE 802.16e_D6				
Notice	the contributing individual(s) or organization	IEEE 802.16. It is offered as a basis for discussion and is not binding on ion(s). The material in this document is subject to change in form and r(s) reserve(s) the right to add, amend or withdraw material contained			
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.				
Patent Policy and Procedures	The contributor is familiar with the IEEE 8 <http: 16="" ieee802.org="" ipr="" patents="" policy.h<br="">of patent(s), including patent applications, with respect to patents essential for compli- disclosure to the Working Group of patent the possibility for delays in the developme approved for publication. Please notify the electronic form, if patented technology (or</http:>	802.16 Patent Policy and Procedures tml>, including the statement "IEEE standards may include the known use provided the IEEE receives assurance from the patent holder or applicant iance with both mandatory and optional portions of the standard." Early information that might be relevant to the standard is essential to reduce nt process and increase the likelihood that the draft publication will be chair <mailto:chair@wirelessman.org> as early as possible, in written or technology under patent application) might be incorporated into a draft 802.16 Working Group. The Chair will disclose this notification via the</mailto:chair@wirelessman.org>			

A MAP IE for H-ARQ and SDMA Allocation in AAS Zone

[Note: The contribution was accepted in session #35. Changes were not implemented due to an editorial error in the original contribution. This is fixed in this revision. Also, page numbers have been updated according to 802.16e/D6]

Introduction

In the current text, there is no efficient way to support Hybrid ARQ and SDMA allocations in AAS zone simultaneously. The operation scenario of the current schemes for SDMA allocation and Hybrid ARQ is as follows


1) H-ARQ pointer IE in (compressed) DL MAP to H-ARQ MAP

2) First PHY_MOD_IE in H ARQ MAP (undefined yet) to specify the first SDMA preamble

- Describe absolute 2D (DL) / 1D (UL) burst allocation regions
- Describe the corresponding H-ARQ related IEs for each region
- 3) Second PHY_MOD_IE in H-ARQ MAP to specify the second SDMA preamble
 - Describe absolute 2D (DL) / 1D (UL) burst allocation regions
 - Describe the corresponding H-ARQ related IEs for each region...

Thus, we can find out that bandwidth allocation overhead linearly increases as the number of SDMA users. Also, the number of PHY_MOD_IEs can be up to the maximum number of reused beams.

Proposed Solution

The burst allocation region of SDMA users can be fixed for scheduling simplicity and lower signaling overhead. In addition, modifier index for SDMA preamble can be extracted from description order of SDMA users. The proposed solution can be summarized as follows

- 1) Introduce Extended IUC in DL/UL MAP for SDMA allocation (not available yet)
- 2) Use '1' of '5' reserved bits in AAS_IE() to specify modifier type, "Time" or "Freq." shift

3) Describe the shared 2D (DL) or 1D (UL) allocation regions

■ Specify {CID, modulation/coding schemes (IUC or H-ARQ)} fields

■ Implicitly assign SDMA preamble index with description order of CIDs. Due to limited length of Extended IUC, starting offset of preamble modifier is included.

• Optionally include CQICH/ACKCH allocation IE for DL burst and uplink power adjustment IE.

Optionally specify pilot patterns for SDMA users

4) Use a pointer IE for special Sub Map including the all information elements described above.

In this contribution, a new Normal MAP IE including the features $1) \sim 3$ is proposed. Note that the mechanism supporting the feature 4) is a general MAC issue and is to be considered in other contributions (For example, see Sub Map mechanism in C80216e-05_23, Normal MAP Extension for H-ARQ)

Suggested Text Changes

[Add the following fields to the end of AAS_DL_IE in Sec. 8.4.5.3.3]

[Add "Preamble Type Bit" into AAS_DL_IE in Sec. 8.4.5.3.3 and AAS_UL_IE in Sec. 8.4.5.4.6]

Syntax	Size (bits)	Notes
AAS_DL_IE(){		
Extended DIUC	4	AAS = 0x02
Length	4	Length in bytes of following fields (0x03)
		0b 00 = PUSC
Dormutation	2	0b 01 = FUSC
Permutation	2	0b 10 = Optional FUSC
		0b 11 = AMC Permutation
DL PermBase	6	PermBase for AAS DL Zone
Symbol Offset	8	AAS zone starting offset referenced from DL frame preamble
AAS DL		0b 00 – 0 symbols
	2	0b 01 – 1 symbols
Preamble indication		0b 10 – 2 symbols
indication		0b 11 3 symbols
Draambla Truna	1	0 – Frequency shifted preamble is used in this AAS zone
Preamble Type	1	<u>1 – Time shifted preamble is used in this AAS zone</u>
Reserved	<u>7</u>	Shall be set to zero
}		

AAS DL IE in Sec. 8.4.5.3.3

[Add the following fields to the end of AAS_UL_IE in Sec. 8.4.5.4.6]

AAS_UL_IE in Sec. 8.4.5.4.6

Syntax	Size (bits)	Notes
AAS_UL_IE(){		

[
Extended UIUC	4	AAS = 0x03
Length	4	Length in bytes of following fields (0x04)
		0b 00 = PUSC
Permutation		0b 01 = FUSC
Permutation	2	0b 10 = AMC Permutation
		0b 11 = Reserved
UL PermBase	7	PermBase for AAS UL Zone
Control Officia	8	AAS zone starting offset referenced from 'Allocation Start Time' in the
Symbol Offset		UL MAP
AAS zone length	8	Number of OFDMA symbols in AAS zone
		0b 00 – 0 symbols
AAS-UL	2	0b 01 1 symbols
Preamble indication	2	0b 10 – 2 symbols
		0b 11 3 symbols
Dressen 1 - Trees	1	0 - Frequency shifted preamble is used in this AAS zone
Preamble Type	<u>1</u>	1 – Time shifted preamble is used in this AAS zone
Reserved	<u>7</u>	Shall be set to zero
}		
· ·		

[Create a new AAS_SDMA_DL_IE in Sec. 8.4.5.3.x and AAS_SDMA_UL_IE in Sec. 8.4.5.4.x]

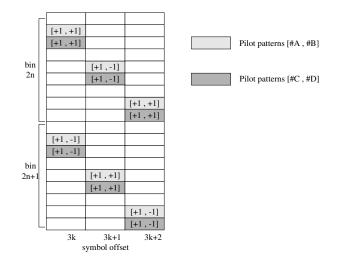
<u>AAS_SDWA_DL_IE III Sec. 6.4.5.5.x</u>					
<u>Syntax</u>	<u>Size</u> (bit)	Notes			
AAS SDMA DL IE(){					
Extended DIUC2	4				
Length	8				
RCID_Type	2 bits	00 = Normal CID			
		01 = RCID11			
		10 = RCID7			
		11 = RCID3			
Num Burst Region	<u>4</u>				
<u>For (ii = 1: Num Region) {</u>					
OFDMA symbol offset	<u>8</u>	Starting symbol offset referenced to DL preamble of the			
Ordina symbol onset	<u>o</u>	downlink frame specified by the Frame Offset			
<u>If (Permutation = 0b11) {</u>		For the AMC permutation (2 x 3 type)			
Subchannel offset	<u>8 bits</u>				
No. OFDMA triple symbol	<u>5 bits</u>	Number of OFDMA symbols is given in multiples of 3			
No. subchannels	<u>6 bits</u>				
Else {					
Subchannel offset	<u>6 bits</u>				
No. OFDMA Symbols	<u>7 bits</u>				
No. subchannels	<u>6 bits</u>				
1					
Number of Users	<u>3</u>	SDMA users for the assigned region			
<u>For (jj = 1: Num Users) {</u>					
<u>RCID_IE()</u>	<u>Variable</u>				
		<u>00: No H-ARQ</u>			
Encoding Mode	2	01: H-ARQ Chase Combining			
Encoung wode	<u> </u>	10: H-ARQ Incremental Redundancy			
		11: H-ARQ Conv. Code Incremental Redundancy			
CQICH Allocation	1	0: Not Included			
	<u> </u>	<u>1: Included</u>			

AAS_SDMA_DL_IE in Sec. 8.4.5.3.x

	1	0. Not Included
ACKCH Allocation	<u>1</u>	0: Not Included 1: Optionally included for H-ARQ users
		0: Not Applied
Pilot Pattern Modifier	<u>1</u>	1: Applied
If (AAS DL Preamble Used) {		
Preamble Modifier Index	4	Preamble Modifier Index
}		
If (Pilot Pattern Modifier) {		
<u></u>		See section 8.4.6.3.2
Pilot Pattern	<u>2</u>	00: Pattern #A , 01: Pattern #B
		10: Pattern #C, 11: Pattern #D
<u>}</u>		
If (Encoding Mode = = 00) {		No H-ARQ
DIUC	4	
		00: No repetition
Repetition Coding	2	01: Repetition of 2
Indication	2	10: Repetition of 4
		<u>11: Repetition of 6</u>
$If (Encoding Mode = = 01) \{$		H-ARQ Chase Combining
If (ACKCH Allocation) {	_	
ACK CH Index	<u>5</u>	See DL Ack channel index in 8.4.5.4.24
DIUC	4	
	<u> </u>	00: No repetition
Repetition Coding		01: Repetition of 2
Indication	<u>2</u>	10: Repetition of 4
		11: Repetition of 6
ACID	<u>4</u>	
AI_SN	<u>1</u>	
If (Encoding Mode = = 10) {		H-ARQ Increamental Redundancy
If (ACKCH Allocation) {		
ACK CH Index	<u>5</u>	See DL Ack channel index in 8.4.5.4.24
	4	
<u>N</u> EP	<u>4</u>	Indicator for the number of first slots used for data
<u>N_{SCH}</u>	<u>4</u>	encoding in this SDMA allocation region
SPID	<u>2</u>	
ACID	4	
AISN	1	
If (Encoding Mode = = 11) {		H-ARQ Conv. Code Increamental Redundancy
If (ACKCH Allocation) {		
ACK CH Index	<u>5</u>	See DL Ack channel index in 8.4.5.4.24
DIUC	<u>4</u>	00. No monstition
Papatition Coding		00: No repetition 01: Repetition of 2
Repetition Coding Indication	<u>2</u>	<u>01: Repetition of 2</u> <u>10: Repetition of 4</u>
mulcauon		<u>11: Repetition of 6</u>
SPID	2	
ACID	4	
<u> </u>	<u>4</u>	

AI SN	1	
	<u> </u>	
<u>}</u>		
If (CQICH Allocation Included) {		
Allocation Index	6 bits	Index to the channel in a frame the CQI report should be
		transmitted by the SS
Period (p)	<u>3 bits</u>	A CQI feedback is transmitted on the CQI channels
		indexed
		by the (CQI Channel Index) by the SS in every 2 ^p frames.
Frame offset	<u>3 bits</u>	The MSS starts reporting at the frame of which the number
		has the same 3 LSB as the specified frame offset. If the
		current frame is specified, the MSS should start reporting
		in 8 frames.
Duration (d)	4 bits	A CQI feedback is transmitted on the CQI channels
		indexed
		by the (CQI Channel Index) by the SS for
		$2^{(d-1)}$ frames. If d is 0b0000, the CQICH is de-allocated.
		If d is 0b1111, the MSS should report until the BS
		command for the MSS to stop
1		
<u>}</u>		End of User loop
1		End of Burst Region Loop
Padding	<u>variable</u>	
}		

AAS_SDMA_UL_IE in Sec. 8.4.5.4.x				
<u>Syntax</u>	<u>Size</u> (bit)	Notes		
Extended UIUC2	4			
Length	8			
RCID_Type	2 bits	00 = Normal CID		
		01 = RCID11		
		10 = RCID7		
		11 = RCID3		
Num Burst Region	4			
For (ii = 1: Num Region) {				
Slot offset	<u>12</u>	Starting slot offset in AAS zone referenced to right after UL AAS preamble		
Slot duration	10			
Number of Users	<u>3</u>	SDMA users for the assigned region		
	<u> </u>	SDWA users for the assigned region		
<u>For (jj = 1: Num_Users) {</u>				
<u>RCID_IE()</u>	<u>Variable</u>			
		00: No H-ARQ		
Encoding Mode	<u>2</u>	01: H-ARQ Chase Combining		
	_	10: H-ARQ Incremental Redundancy		
		11: H-ARQ Conv. Code Incremental Redundancy		
Power Adjust	<u>1</u>	<u>0: Not Included</u>		
	_	1: Included; Signed integer in 0.25 dB Unit		
Pilot Pattern Modifier	<u>1</u>	0: Not Applied 1: Applied		
If (AAS UL Preamble Used) {				
Preamble Modifier Index	4	Preamble Modifier Index		
	<u> </u>			
1				
If (Pilot Pattern Modifier) {		<u>Pilots per beam</u>		
		See sections 8.4.8.1.5 (Fig. 249) and 8.4.6.3.2		
Pilot Pattern	<u>2</u>	00: Pattern #A, 01: Pattern #B		
		<u>10: Pattern #C , 11: Pattern #D</u>		
<u>}</u>				
If (Encoding Mode = = 00) {				
DIUC	<u>4</u>			
		00: No repetition		
Repetition Coding	2	01: Repetition of 2		
Indication	<u>2</u>	10: Repetition of 4		
		<u>11: Repetition of 6</u>		
<u>If (Encoding Mode = = 01) {</u>				
DIUC	<u>4</u>			
		00: No repetition		
Repetition Coding	<u>2</u>	01: Repetition of 2		
Indication		<u>10: Repetition of 4</u>		
		11: Repetition of 6		
ACID	4			
<u>AI SN</u>	<u>1</u>			
If (Encoding Mode = = 10) {	4			
<u> </u>	<u>4</u>			


AAS_SDMA_UL_IE in Sec. 8.4.5.4.x

N	<u>4</u>	Indicator for the number of first slots used for data
<u>N_{SCH}</u>	±	encoding in this SDMA allocation region
SPID	<u>2</u>	
ACID	<u>4</u>	
AI SN	<u>1</u>	
If (Encoding Mode = = 11) {		H-ARQ Conv. Code Incremental Redundancy
DIUC	<u>4</u>	
		00: No repetition
Repetition Coding	2	01: Repetition of 2
Indication	<u>2</u>	10: Repetition of 4
		11: Repetition of 6
<u>SPID</u>	<u>2</u>	
ACID	<u>4</u>	
AI_SN	<u>1</u>	
<u>}</u>		
If (Power Adjust Included) {		
Power adjustment	<u>8</u>	Signed integer in 0.25 dB Unit
<u>}</u>		
1		End of User loop
1		End of Burst Region Loop
Padding	variable	
1		

[Add the following new section]

8.4.6.3.2 AMC support for SDMA

The pilots in an AMC AAS zone are regarded as part of the allocation, and as such shall be beamformed in a way that is consistent with the transmission of the allocation's data subcarriers. In an SDMA region, the pilots of each allocation may correspond to a different pilot pattern. A pilot pattern consists of location and polarity. The pilot patterns are depicted in figure XXX. Data subcarriers shall be punctured to obtain patterns #2 and #3. Subcarriers shall only be punctured if there is an allocation associated with the corresponding pattern, as described in the AAS SDMA DL IE() and AAS SDMA UL IE(). Only MSSs that support all four pilot patterns, as indicated by their capability in 11.8.3.7.X, shall be assigned allocations in an SDMA region where pilot patterns #2 and #3 are used. Data subcarriers shall be punctured after constellation mapping in the case of CC encoding, and prior to constellation mapping in the case of CTC encoding. In the latter case, the FEC block shall be truncated to accommodate the punctured subchannel structure, and the data subcarrier enumeration of Eq. (116) shall not be applied. Instead, data subcarriers within a slot shall be enumerated starting from the first OFDMA symbol at the data subcarrier that is lowest in frequency, continuing in ascending frequency order throughout the slot's subcarriers in the same symbol, then going to the next symbol at the subcarrier lowest in frequency, and so on.

Figure XXX – Pilot patterns for AAS mode in AMC zone. Symbol offset is relative to the beginning of the zone. Pilot polarity for each pattern is given in brackets.

[Change text on page 618 lines 5-9 of 802.16-2004, to the following text:]

$$\operatorname{Re}\{c_{k}\} = \frac{8}{3} \left(\frac{1}{2} - w_{k}\right) \cdot p_{k}$$

$$\operatorname{Im}\{c_{k}\} = 0$$
(135)

where p_k is the pilot's polarity (as described in section 8.4.6.3.2) for SDMA allocations in AMC AAS zone, and $p_k = 1$ otherwise.

[Modify reduced AAS-private DL-MAP on table ZZZ308a, page 284357, line 4217:]

Preamble Shift Index	4 bits	Updated preamble shift index to be used starting with the frame specified by the Frame Offset.
Reserved Pilot Pattern Modifier Pilot Pattern Index	3 bits 1 bit 2 bit	Set to zero 0: Not Applied, 1: Applied pilot pattern used for this allocation (see section 8.4.6.3.2): 00 – Pilot pattern #A, 01 – Pilot pattern #B 10 – Pilot pattern #C, 11 – Pilot pattern #D

[Modify reduced AAS-private UL-MAP on table <u>ZZZ308b</u>, page <u>360288</u>, line <u>279</u>:]

Preamble Shift Index	4 bits	Updated preamble shift index to be used starting with the frame specified by the Frame Offset.
Reserved	3 bits	Set to zero
Pilot Pattern Modifier	1 bit 2 bit	<u>0: Not Applied, 1: Applied</u> See sections 8.4.8.1.5 (Fig. 249) and 8.4.6.3.2:
Pilot Pattern Index	2.011	$\frac{366}{90} = \frac{1}{100} \frac$
		<u>10 – Pilot pattern #C, 11 – Pilot pattern #D</u>

11.8.3.7.X SDMA Pilot capability

Туре	Length	Value	Scope
YYY	1	Bit #0-#1: SDMA pilot pattern support for AMC zone: 0b00 – no support 0b01 – support SDMA pilot patterns #A and #B 0b11 – support all SDMA pilot patterns 0b10 – reserved Bits #2-#7: Reserved	SBC-REQ SBC-RSP