
2007-11-12 IEEE C802.16m-07/238

Project: IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16

Title: Design of rate-compatible irregular LDPC codes
based on edge growth and parity splitting

Source:

Noah Jacobsen and Robert Soni jacobsen@alcatel-lucent.com +1 (973) 386-7103

Alcatel-Lucent
67 Whippany Road,
Whippany, NJ, USA

Abstract:
This paper considers the design of rate-compatible low-density parity-check (LDPC) codes with opti-
mized degree distributions for their corresponding rates. The proposed design technique is based on
extension, where a high-rate base code, or daughter code, is progressively extended to lower and lower
rates such that each extension code is compatible with the previously obtained codes. Specifically, two
well-known parity matrix construction methodologies, edge growth and parity splitting, are adapted to
yield a flexible framework for constructing rate-compatible parity check matrices. The design examples
provided are based on extrinsic information transfer (EXIT) chart optimizations and demonstrate good
performance up to rates as low as 1/5.

Purpose: Review and adopt the introduction of the LDPC rate compatible code in 802.16m.

Notice: This document does not represent the agreed views of the IEEE 802.16 Working Group or any of its
subgroups. It represents only the views of the participants listed in the ”Source(s)” field above. It is offered as a
basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw
material contained herein.

Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in
this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright
in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution;
and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards
publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE
802.16.

Patent Policy: The contributor is familiar with the IEEE-SA Patent Policy and Procedures: Bylaws and
Operations Manual Further information is located at: IEEE SA Patent Material and IEEE-SA Standards Board Patent Committ

1

http://ieee802.org/16
mailto:jacobsen@alcatel-lucent.com
http://standards.ieee.org/guides/bylaws/sect6-7.html
http://standards.ieee.org/guides/opman/sect6.html
http://standards.ieee.org/board/pat/pat-material.html
http://standards.ieee.org/board/pat


1 Introduction

Irregular LDPC codes [1, 2, 3], and related constructions [4, 5, 6], are known to exhibit better per-
formance with respect to turbo-code benchmarks on a variety of channels, especially independent and
identically distributed (i.i.d.) channel models. Such codes, based on a sparse and random parity struc-
ture, are able to address wide ranges of information block sizes and rates, while being amenable to
efficient hardware implementation. For these reasons, LDPC codes are likely to become much more
prevalent in forthcoming wireless communication systems.

Families of rate-compatible error-correcting codes are useful in different settings in communications
engineering. For example, the hybrid-ARQ protocol is employed to combat fading in cellular systems.
Due to channel variability, it is often more efficient to require multiple fast re-transmissions, as pro-
vided by hybrid-ARQ, to ensure a successful decoding, rather then provisioning for worst case channel
conditions. In the case of wireless vehicular technologies, fading rates are extremely dynamic, and so
rate-compatible codes are particularly well-suited.

The conventional approach for obtaining a family of rate-compatible codes is to start with a mother
code of low-rate and to selectively puncture redundant bits in order to obtain various codewords of
differing length. The problem with such an approach is two-fold: (1) the mother code is typically
optimized for efficient operation at low-rates and subsequently exhibits a widening gap to capacity as
the amount of puncturing increases, and (2) optimizations of code structure and puncturing patterns
are treated separately which is suboptimal. These shortcomings are addressed with the proposed design
technique as follows: Starting from a high-rate base code, referred to as the “daughter code,” rate-
compatible parity check matrices are obtained progressively by extension, in order of decreasing rate, so
as to implicitly solve the problem of puncturing. Further, the degree distribution of any given sub-code
is optimized for its corresponding rate.

Rate-compatible parity matrices produced by extension, illustrated in Figure 1, may alternatively
be viewed as puncture-less codes, since any given transmission can be decoded with its corresponding
parity sub-matrix, rather than by inserting zero LLR-values into a decoder operating on the largest
parity matrix (of lowest rate). The proposed design technique, a hybrid of edge growth [7] and parity
splitting [8], demonstrates that the extension framework is capable of producing rate-compatible LDPC
codes with a uniform gap to capacity over a wide range of rates.

Prior work on this topic includes [9] where puncturing is proven to work well for constructing
compatible families of LDPC codes over a limited range of rates, especially for high code rates, but
suffers as the range is expanded. In [10], a hybrid puncturing/extension approach is proposed but does
not exhibit the desired dynamic range or uniform performance characteristic. Finally, the design in
[11] proposes puncturing in combination with information shortening for achieving code rates less than
one-half.

2 Design technique

The goal of this design is to produce compatible parity-check matrices of flexible and dynamic rate.
The proposed technique extends from a daughter code parity matrix using a hybrid of constrained edge
growth and parity splitting, as described in detail in this section. The resulting rate-compatible LDPC
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Figure 1: Rate-compatible parity matrices by extension

codes exhibit a uniform gap to capacity, less than 1 dB at moderate block-length, over a wide range of
rates.

2.1 Edge growth

Encoding and decoding of LDPC codes are typically developed with their Tanner graph representation.
Edge growth algorithms, in particular Progressive Edge Growth (PEG) [7], are able to produce Tanner
graphs with a good “girth,” which relates to good minimum distance characteristics of the codes.
Generally, such algorithms emphasize selection of graph connections that benefit the performance of
message passing decoders. Finite graphs produced by edge growth according to asymptotically optimal
degree distributions have exhibited a robust performance, especially for high-rate and short block-
length codes, and are employed here for constructing the daughter code (the high-rate base code), as
well as in motivating the extension techique described herein.

Specifically, the PEG algorithm sequentially and greedily assigns edges in the graph such that
the resulting local girth (length of the shortest cycle involving a new edge) is maximized. Edges
are assigned one-by-one in order of increasing variable-degree, and, if desired, according to a given
check-degree distribution (otherwise, the check-degrees are concentrated around their mean-value as
related to the variable-degree distribution and code-length). Other variations of edge growth algorithms
emphasize cycle connectivity in choosing which edges to add. Cycles that are well-connected to the
rest of the graph benefit from a better mix of uncorrelated information regarding their code-bits in
message passing decoding.

The edge growth algorithm is readily modified to extend a base graph according to specific degree
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distributions. This is referred to as constrained edge growth, since the base graph places constraints
on both check- and variable-degree distributions of subsequent extension graphs. In using edge growth
for extension as such, edges are only added to variable-nodes that exhibit a degree increase, with some
variable-nodes potentially receiving no new edges. Constrained edge growth is able to closely match
optimal variable-degree distributions over a course of many rates. It is mainly due to finite block-
length and check-degree constraints that a pure edge growth approach is insufficient for producing
rate-compatible parity matrices of good performance. Thus, in the proposed design technique, both
edge-growth, for its variable-degree flexibility, as well as parity splitting (or check splitting) [8], for
exerting a level of control over the parity-degree distribution, are used to construct rate-compatible
graphs.

2.2 Parity splitting

Check-irregular constructions (where both the check and variable node degrees are varied), though
forming a larger class of irregular LDPC codes, tend to exhibit worse performance than check-regular
constructions (in which all check nodes are of the same degree). Anecdotal evidence suggests that
it is much easier to construct good check-regular graphs at finite block lengths since the burden of
variable-irregularity (in terms of local girth) is evenly distributed amongst the parity nodes. Thus, as a
guiding rule of thumb, check-degrees of the extension codes should be concentrated as close as possible
around a certain desired average degree, namely dopt(r), which is monotone increasing in the rate and
given by density evolution [2].

A parity check equation may be split into multiple parity equations by introducing new degree-two
symbol nodes (see [8]). For example, suppose the set A = {x0, . . . , xd−1} represents code-bits involved
in a degree-d parity constraint:

∑
x∈A x = 0. Then, letting xd denote a new degree-two code symbol,

the given parity equation is split into two: the first involving bits A1 ∪ {xd}, and the second involving
bits A2 ∪ {xd}, where A1 and A2 are disjoint and A = A1 ∪A2. Thus, if the new parities have degrees
d1 and d2, respectively, then d1 + d2 = d + 2 must hold. This operation increases the number of
check constraints by one, creating the incremental redundancy bit, xd, while preserving the base code
structure (note that adding the new parity equations returns the original). A redundancy-bit produced
by parity splitting may be computed with either of the resulting representations. Moreover, with the
exception of a new degree-two code-bit, the variable-node degree distribution remains the same.

Parity splitting is a practical method for creating rate-compatible parity matrices, since large degree
check nodes in the base graph are converted into multiple nodes of smaller degree in extending graphs.
Further, parity splitting is essentially a rate-less technique (see [6]) since redundancy is produced at
the bit-level. Yet, the technique offers no flexibility over the resulting variable-degree distribution, and
is therefore incapable of producing rate-compatible codes with optimized degree distributions. Thus,
a hybrid approach is proposed in this paper, in which edge-growth is utilized for creating good graphs
with appropriate variable-node degree distributions, and parity splitting is utilized for concentrating
the check-degrees as base codes are extended.

Example 1 : A rate-1/2 parity-check matrix, compatible with a rate-4/5 and rate-2/3 code, is
constructed with the preceding design approach. Figure 2 is a scatter-plot representation of the irregular
LDPC Tanner graph obtained for an information block size of k = 600 bits. Columns in the Figure
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Figure 2: Rate-1/2 parity-check matrix obtained by edge growth and parity splitting. Compatible with
a rate-4/5 and rate-2/3 parity-check matrix, k = 600

represent variable-nodes of the graph, and rows represent the check-nodes. Accordingly, dots indicate
edges connecting code-bits to parity-constraints. The gray shaded region indicates that an edge has
arisen when the incident parity-node is split, yielding the incident code-symbol. Any new code-symbol
without an edge in the grey shaded region is given by edge growth, which is further constrained to be
lower-triangular over the new-code symbols.

3 Encoding

The encoder is developed as a simple recursion, where extending code-words are are computed via ma-
trix multiplication with base code-words. For this the following notation is used: The parity extending
sub-matrix of the qth extension code is given by [Pq Lq]. In general, Pq is an lq × nq−1 sparse matrix,
where nq denotes the length of the qth code and lq denotes the number of new code-symbols, so that
lq = nq − nq−1. Similarly, Lq is an lq × lq sparse (and lower-triangular) matrix. Figure 3 illustrates
the parity extending sub-matrix [P2 L2], corresponding to Example 1, where a rate-1/2 code extends
a rate-2/3 base code.

Assuming Lq is invertible, and that rows of Pq are linearly independent, it is easy to show that
cq = cq−1[Inq−1 (L−1

q Pq)T] extends the base code-word cq−1 to code-word cq, where In denotes the
n × n identity matrix. The extension algorithm developed constrains Lq to be lower-triangular and
invertible (in fact Lq tends to be easily invertible, as observed for L2 in Figure 2), and it is straight
forward to solve L−1

q Pq by Gaussian elimination. Note that when the base graph is extended, any of
its parity constraints are potentially split, thus the following nomenclature is adopted: Any sub-matrix
X of the base graph becomes X ′ in the extending graph.
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Figure 3: Parity-check matrix decomposition for recursive encoding corresponding to example in Fig.
2

4 Optimization framework

A framework for extending irregular LDPC codes to lower rates is described, and examples based
on EXIT chart optimizations [12, 13, 14] are provided. Since EXIT charts rely on large code-word
asymptotics, the optimization framework is essentially independent of information block-length, and
thus one family of optimized degree distributions may be used to produce rate-compatible codes, for
the same set of rates, for multiple information block-lengths.

Given a base graph of rate rn−1 and a target rate rn < rn−1, a fraction γn = 1 − rn/rn−1, relative
to the extending code-word length, of new code symbols are introduced. The basic approach consists
of two steps: (1) A certain fraction, denoted αn, of the new code symbols are obtained by splitting
check nodes of the base graph. This yields a fraction of αnγn new degree-two variable nodes. (2) The
remaining fraction, 1 − αn, of new code symbols are developed by constrained edge growth. Thus,
αn and the extension graph check- and variable-degree distributions are the variables to be optimized.
The optimization constraints are given by base graph check- and variable-degree distributions, and the
extending rate, rn.

All variable-degree distributions used in this paper are given by EXIT chart optimizations with a
rate-compatible constraint. Then, since the base graph check-degree distribution is modified by splitting
its check nodes, the focus is on choosing αn and the degree-distribution of check-nodes produced by
edge growth. Ideally, these parameters are optimized jointly, over the set of supported rates, in order to
ensure a global performance characteristic. However, this would be computationally quite complex, and
in the following we describe a simpliflied, sequential optimization procedure which yields an acceptable
level of performance.

Simplified optimization: The rate-compatible codes are optimized sequentially, in order of decreasing
rate. We assume that all parity nodes that are split are done so evenly, that they are split in order of
largest degree, and that all new parity constraints developed by edge growth have the same, possibly
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Figure 4: Optimized EXIT functions with forward compatibility constraint

fractional, degree, namely dn. A fractional degree in this context is interpreted as an average degree
arising from two consecutive integers. A heuristic which attempts to concentrate the check-degrees
around their optimal mean-value, dopt(rn), is used to choose αn. Thus, with αn and the base graph
check-distribution specified, choosing dn ≈ dopt(rn) suffices to describe the extending graph check-
distribution, while adhering to the concentration heuristic. Finally, EXIT chart matching is employed
to optimize the variable-degree distribution with afore mentioned constraints, including αnγn new
degree-two variable-nodes.

Figure 4 shows an example of EXIT charts of rate-compatible codes that results from the preceding
optimization approach. The EXIT charts consist of variable- and check-node transfer functions that
express an input-output mutual information relationship regarding the estimated code-symbols (see
for example [13]). Starting from a daughter code and progressively optimizing the extending codes
in order of decreasing rate places the most stringent constraints on lowest-rate code, and therefore a
performance degradation is expected at low-rates. An optimization framework that employs reverse- as
well as forward-compatibility constraints could be used to emphasize any member of the rate-compatible
family. However, codes designed in this paper utilize the forward-compatible constrained optimization
as described, which emphasizes the daughter code (i.e. the first transmission).
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5 Results

Rate-compatible parity matrices are constructed according to the proposed design technique for the
following set of rates: 4/5, 2/3, 1/2, 1/3, and 1/5. In this paper, the same set of optimized degree
distributions is used to produce rate-compatible parity matrices for all information block-sizes. In
constructing the codes, parity-nodes of largest degree are always split first, but otherwise in no par-
ticular order. The parity splitting technique benefits modestly by incorporating a cycle connectivity
metric in choosing which nodes to split, especially for the high-rate codes. (Note that parity equations
may be split in multiplicity which is useful if there is a significant step-size between the base- and
extension-code rate.)

Figure 5 demonstrates the code-word error-rate (WER) and information-bit error-rate (BER) per-
formance for an information block-size of k = 600 bits. The codes demonstrate a good performance for
this block-size, as compared with turbo-code benchmarks, and exhibit no significant error floors up to
WER of 1e-3.

Figure 6 shows the gap to capacity for information block-lengths of 600, 1500, and 6000, as measured
at a BER of 1e-4. The results exhibit a roughly uniform gap to capacity, less than 1 dB at k = 6000,
over a wide range of code rates. The gap to capacity begins to widen at low-rates, in the area of rate-
1/5 for the design example provided. The widening gap at low code-rates stems from the simplified
optimization technique, with forward compatibility constraint, as well as difficulties with conventional
irregular LDPC designs at low code-rates.

6 Conclusion

We demonstrate that extension based development of irregular LDPC Tanner graphs is able to produce
rate-compatible codes of good performance. The technique is flexible in the range and granularity of
the rates that it supports, and it inherently addresses the problem of puncturing which is present in
mother code based designs. Moreover, since every subcode is viewed as punctureless, this construction
also shows a decoding complexity advantage.

As noted in [3], standard irregular LDPC code constructions are challenged at low code-rates. This
issue has been addressed in the literature with the use of precoding techniques. Examples of pre-coded
irregular codes on graphs include repeat accumulate (RA) style codes [4, 5], and raptor codes [6]. Such
architectures bear an increased similarity with turbo-codes, which perform well at low rates. With
the additional constraint of forward-compatibility, it is conjectured that the application of precoding
techniques could benefit the performance of rate-compatible LDPC codes built by extension. This is
an item of future study. Work in this direction is reported in [15].

Codes designed in this paper differ significantly from the random-like constructions prescribed in [2].
Although asymptotic arguments are employed to optimize the degree-distributions, we further account
for the specific matrix construction technique, which is chosen primarily to address finite block-length
considerations. At the opposite end of the spectrum from large, random-looking graphs are proto-
graph based constructions [16], which are derived from copies of a much smaller base graph, with
highly structured inter-connections. Proto-graph based LDPC codes, in their simplicity (elagance),
offer desirable implementation advantages. However, it is conjectured here that the reduced degrees of
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Figure 5: Performance of rate-compatible irregular LDPC codes, k = 600

freedom of proto-graphs lead to an increased gap to capacity. This claim is supported by direct result
comparisons with [17]. In short, the more “random-like” flexibility of extension-style constructions
should benefit their performance, if at the cost increased complexity of description and implementation,
but this is not yet quantified.
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