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CAZAC Sequence Codebooks for the 802.16m Synchronization Channel
Kim Olszewski
ZTE USA, Inc.

1 Introduction

The synchronization channel (SCH) is a DL physical channel used by MSs in order to synchronize with the
network. It may consist of two subchannels, the P-SCH (Primary-SCH) and S-SCH (Secondary-SCH). An
MS can process SCH symbols to obtain frame timing, OFDMA symbol timing, cell identi�ers and other
information. In choosing sequences for SCH symbols various constraints and requirements must be taken
into account. For example, the following:

� SCH sequences should be as short as possible to reduce overhead.

� SCH sequences should have �at power spectrums.

� The PAPR of SCH sequences should be small to avoid clipping due to transmitter nonlinearities and
to allow for maximal possible transmit power.

� SCH sequences should be robust to multipath transmission and multiple-user communications.

� SCH sequences be suitable for fast AGC adjustment which calls for small sequence amplitude varia-
tions.

� SCH sequences should have low correlation side lobes and high correlation peaks.

� For cell identi�cation SCH sequences should serve as codewords that encode cell/sector identi�ers.

Some typical sequences used for SCH symbols are PN, Walsh-Hadamard and Golay sequences. How-
ever, the perfect auto-correlation property of these sequences is extremely sensitive to Doppler shifts.
CAZAC (constant amplitude zero autocorrelation) sequences provide another option. There are di¤erent
constructions of CAZAC sequences resulting in di¤erent behavior with respect to Doppler and additive
noise/interference.

In this contribution we describe some candidate quadratic-phase and quadratic-residue CAZAC se-
quences that may be used for SCH symbols. Metrics are then de�ned to evaluate the di¤erent candidate
CAZACs. We describe how SCH codebooks may be constructed using orthogonal quadratic-phase CAZAC
sequences. Codewords in the SCH codebooks correspond one-to-one with cell/sector identi�ers. We de-
scribe how cell identi�cation may be implemented using the SCH codebooks. The contribution ends with
proposed text for the SCH section of the SDD draft.

2 Candidate CAZAC Sequences for the SCH

Let Z denote the set of integers (positive, negative or zero) and ZK = f0; 1; :::;K � 1g be the additive
group of integers Z modulo K. A Constant Amplitude Zero Autocorrelation (CAZAC) is a K-periodic
sequence fc[k]gK�1k=0 sequence with the following properties:

� Constant Amplitude (CA): For all k 2 ZK the sequence�s magnitude is jc[k]j = 1.

� Zero Autocorrelation (ZAC): For all time delays m � 0 the sequence�s periodic autocorrelation
is

Rc[m] = Rc[�m] =
1

K

K�1X
k=0

c�[k]c[(k +m)modK] =

�
1 if mmodK = 0
0 otherwise

(1)
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CAZAC sequences are important SCH symbol candidates because of their de�ning properties: CA
ensures optimal transmission e¢ ciency. CA allows the transmission of peak power throughout the duration
of an SCH symbol. This allows more power to be transmitted thereby increasing received SINR. ZAC
provides tight time localization. Sharp cross-correlation peaks obviate distortion and interference in the
received waveform.

If fc[k]gK�1k=0 is a CAZAC sequence then fc[k]g
K�1
k=0 has the following properties:

Property 1: The complex-conjugated sequence fc�[k]gK�1k=0 is also a CAZAC sequence.

Property 2: For any integer m the time-shifted sequence fc[k +m]gK�1k=0 is also a CAZAC sequence.

Property 3: For any complex number � 2 C the sequence f�c[k]gK�1k=0 is also a CAZAC sequence.

Property 4: The discrete Fourier transform of fc[k]gK�1k=0 is also a CAZAC sequence. A CAZAC sequence
is a full bandwidth sequence with unity power spectrum.

Property 5: For any nth root of unityWn and any integerm the cyclically shifted sequence fc[k]Wm
n g

K�1
k=0

is also a CAZAC sequence.

There are di¤erent types of CAZAC sequences of any given length K. The di¤erent types may be
useful for di¤erent applications. The di¤erent types result in di¤erent behavior with respect to Doppler
and additive noise and interference.

The di¤erent types of CAZAC sequences can be categorized into two distinct categories: quadratic-
phase CAZAC sequences and quadratic-residue CAZAC sequences. Quadratic-phase CAZAC sequences
are linearly swept frequency sequences. Quadratic residue CAZACs are small alphabet CAZACs since
elements can be of at most three distinct values.

A quadratic-phase CAZAC sequence has elements in the form c[k] = ej
2�a
K
P (k) where P (k) is a quadratic

polynomial. A length K quadratic-phase CAZAC sequence fc[k]gK�1k=0 for k 2 ZK can be parametrized by
writing its elements as

c[k] = ej
2�a
K
P (k) =

8<: e
j 2�a
K

�
k2

2
+bk

�
if K is even

e
j 2�a
K

�
k2

2
+[2b+1] k

2

�
if K is odd

(2)

Parameters a and b are integers in Z; a and K are relatively prime meaning they have no common factor
other than 1. Hence, if K is a prime number a set of K � 1 sequences may be de�ned in terms of b. We
use this property below to construct SCH codebooks.

Quadratic-residue sequences of prime length K are de�ned in terms of a Legendre symbol. Note that
K must be an odd-number. For integers k 2 ZK and positive odd primes K the Legendre symbol is de�ned
as

�
k

K

�
=

8<:
0 if kmodK = 0
+1 if k equals a squared integer (mod K)
�1 if k does not equal a squared integer (mod K)

(3)

Elements within a quadratic-residue sequence are computed from

c[k] = ej2��(k;K) (4)

where

� (k;K) =

8<: arccos
�

1
1+
p
K

� �
k
K

�
if K = 1mod4

1
2 arccos

�
1�K
1+K

� �
(1� �k)

�
k
K

�
+ �k

�
if K = �1mod4

(5)
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Figure 1: Example periodic auto-correlation function plots for a length-13 quadratic-residue sequence and
a length-16 quadratic phase sequences. Not the increased sidelobes in the quadratic-residue CAZAC.

3 Functions for Comparing CAZAC Sequences

3.1 PSL and ISL Functions

Two important metrics for sequence performance analysis are the peak sidelobe level (PSL) function and
the integrated sidelobe level (ISL) function. The PSL function of a sequence fc[k]gK�1k=0 is de�ned as

PSLdB = 10 log10

"
max1�m�K�1 j
c[m]j2

j
c[0]j2

#
(6)

and the ISL function as

ISLdB = 10 log10

 PM�1
m=1 j
c[m]j

2

j
c[0]j2

!
(7)

where


c[m] =
1

K

K�m�1X
k=0

c[k +m]c�[k] (8)

is de�ned as the aperiodic autocorrelation. The PSL function provides a measure of the largest sidelobe as
compared with the peak, the ISL function provides a measure of the total power in the correlation sidelobes
as compared with the peak. Note that PSL and ISL are also bene�cial in determining the minimal sequence
lengths to use.

Quadratic-phase CAZACs have good PSLs and ISLs. In terms of PSL and ISL quadratic-residue
CAZACs are not as desirable as quadratic-phase CAZACs.
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3.2 The Ambiguity Function

In signal processing an ambiguity function is a two-dimensional function of time delay and Doppler fre-
quency. The periodic (discrete) ambiguity function of sequence fc[k]gK�1k=0 is de�ned as

Ac[m;n] =
1

K

K�1X
k=0

c�[k]c[(k +m)modK]ej
2�nk
K (9)

Here integer m is associated with time delay and integer n with a frequency or Doppler shift.
The ambiguity function provides a concise way of analyzing matched �lter or cross correlator operations

on a received sequence. For a given constant frequency N = n the ambiguity function cut Ac[m;N ]
display�s a matched �lter�s output as a function of time m. It is a time-delay cut with constant frequency
N . Similarly, for a given constant time delay m = M the ambiguity function cut Ac[M;n] display�s a
matched �lter�s output as a function of Doppler frequency shift n. It is a delay cut with constant time
M . Matched �lter or cross correlation operations can be evaluated at regularly-spaced intervals in the
delay-Doppler space of an ambiguity function plot.

As an example, consider a pseudorandom m-sequence. The ambiguity function Ac[m;n] produced by
a pseudorandom m-sequence is a 2-dimensional Dirac delta function. Both the zero-delay cut Ac[0; n] and
zero-Doppler cut Ac[m; 0] are unit impulses. Hence any Doppler shift in the transmitted sequence would
make the correlation function theoretically disappear to zero. Clearly, this is not desirable if a MS has
unknown velocity or Doppler shift since its correlation function will disappear without receiver adjustment
or Doppler cancellation.

However, if knowledge of the precise Doppler frequency n is given detection can be accomplished easily
without interference. Any other MS which is not moving at exactly the same velocity will produce a
zero cross correlation value. Hence the computed magnitude jAc[m;n]j may be used for detecting Doppler
frequency shifts and therefore MS speeds which can be derived from Doppler estimates.

For example let ~un[k] = c[k]e�j
2�nk
K denote a sample from a received Doppler shifted CAZAC sequence.

The periodic ambiguity function and periodic cross correlation are related as follows:

Ac[m;n] = Rc;~un [m] =
1

K

K�1X
k=0

c�[k]~un[(k +m)modK] =
1

K

K�1X
k=0

c�[k]c[(k +m)modK]ej
2�n(k+m)modK

K

(10)
Hence the computed magnitude jRc;~un [m]j may be used for detecting Doppler frequency shifts and therefore
MS speeds.

Di¤erent CAZAC sequences exhibit di¤erent behavior in their ambiguity plots. The ambiguity function
reveals localization properties of di¤erent CAZAC sequences. Quadratic-residue CAZAC sequences have
good Doppler resolution and time-delay resolution capability (see Figure 3) but have high correlation
sidelobes. On the other hand, quadratic-phase CAZAC sequences exhibit strong delay-Doppler coupling
(see Figure 2) but have low correlation sidelobes.

4 The Sensitivity of CAZACS to Doppler Frequency Shifts

The perfect cross-correlation of Golay sequences is extremely sensitive to Doppler shifts. The shape of
the ambiguity function plot is ideal along the zero-Doppler axis but o¤ the zero-Doppler axis it has large
sidelobes.

Sequences that can be detected in the presence of various Doppler frequency shifts belong to a class
called Doppler tolerant sequences. Quadratic-phase CAZACs are examples of Doppler tolerant sequences.
Quadratic-phase CAZACs have good PSLs and ISLs but their ambiguity functions exhibit strong delay-
Doppler coupling, see Figure 2.
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Figure 2: Eaxmple contour plot of the ambiguity function of quadratic-phase CAZAC.
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Figure 3: Example contour plot of the ambiguity function of quadratic-residue CAZAC.
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If a sequence is Doppler tolerant the output of a cross-correlator will not be signi�cantly degraded when
the received sequence is Doppler frequency shifted. However, the frequency shift translates into a time shift
of the correlator output, a decrease in the output amplitude, and an increase in the sidelobes. Therefore,
the cost for improved behavior under a frequency shift is decreased time delay accuracy. However, these
degradations are usually not signi�cant. Therefore, even if an MS signal processor is not matched to
Doppler its output will have a peak that can be detected.

In contrast, when using a quadratic-residue sequence we would need to compensate for Doppler shifts
or have a bank of cross-correlators matched to the range of expected MS Doppler frequencies. This is
because the ambiguity function of a quadratic-residue sequence has a peak only at the zero Doppler cut.

5 CAZAC Sequence Codebooks for the Synchronization Channel

Based on the above described CAZAC sequence characteristics and plots we propose the use of quadratic-
phase CAZAC sequences for the SCH. We now describe how SCH codebooks can be de�ned by exploiting
the properties of these sequences.

As shown above a length K quadratic-phase CAZAC sequence fc[k]gK�1k=0 for k 2 ZK can be de�ned in
terms of parameters a and b. We set a = 1 and for K odd we de�ne the sequences

C1 =
n
ej

�
K
k(k�1)

oK�1
k=0

if b = �1

C2 =
n
ej

�
K
k(k�3)

oK�1
k=0

if b = �2
...

...

CK =
n
ej

�
K
k(k�2K+1)

oK�1
k=0

if b = �K

(11)

Similarly, for K even we de�ne the sequences

C1 =
n
ej

�
K
k(k�2)

oK�1
k=0

if b = �1

C2 =
n
ej

�
K
k(k�4)

oK�1
k=0

if b = �2
...

...

CK =
n
ej

�
K
k(k�2K)

oK�1
k=0

if b = �K

(12)

Using these sequences we construct the CAZAC sequence codebook

C =
n
C1 = fc1[k]gK�1k=0 ; : : : ; CM = fcM [k]gK�1k=0

o
(13)

where M � K and

ci[k] =

�
ej

�
K
k(k�2i) if K is even

ej
�
K
k(k�2i+1) if K is odd

(14)

Each codeword in Ci in C is a unique quadratic-phase CAZAC sequence. In addition, as shown in the next
section the CAZAC sequence codewords are orthogonal. Note that other codebooks can be constructed by
changing the value of parameter a, a and K must be relatively prime.

6 Some Properties of CAZAC Sequence Codebooks

Let K be even and
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cli [k] = ej
�
K
k(k�2li) = ej

�
K (k

2�2lik) (15)

For any li and lj in f0; 1; 2; : : : ;Mg the periodic cross-correlation between fcli [k]g
K�1
k=0 and

�
clj [k]

	K�1
k=0

is

Rcliclj [m] =
1

K

K�1X
k=0

cli [k]
�
clj [(k +m)modK]

�� (16)

=
1

K

K�m�1X
k=0

cli [k]
�
clj [k +m]

��
+
1

K

K�1X
k=K�m

cli [k]
�
clj [k +m�K]

�� (17)

=
1

K

K�1X
k=0

e�j
�
K (k

2�2kli)ej
�
K ((k+m)

2�2(k+m)lj) (18)

= ej
�m
K
(m�2lj)

"
1

K

K�1X
k=0

ej
2�k
K
(m+li�lj)

#
(19)

For the summation we have

1

K

K�1X
k=0

ej
2�k
K
(m+li�lj) =

�
1 if (m+ jli � lj j)modK = 0
0 otherwise

(20)

Hence we have

Rcliclj [m] =

�
ej

�m
K
(m�2lj) if (m+ jli � lj j)modK = 0

0 otherwise
(21)

and ���Rcliclj [m]��� = � 1 if (m+ jli � lj j)modK = 0
0 otherwise

(22)

A sequence set CCS is categorized as being orthogonal if for any m � 0 and i < M we have���Rcliclj [m]��� = � 1 if li = lj and m = 0
0 if li 6= lj and m = 0

(23)

A sequence set CCS is categorized as being Z-orthogonal or a zero-correllation zone (ZCZ) sequence set of
size Z if for any m � 0 and i < M we have

���Rcliclj [m]��� =
8<:
1 if li = lj and m = 0
0 if li 6= lj and m = 0
0 if li 6= l2 and 1 � jmj � Z

(24)

where Z � N=M � 1. Hence, for any Ci and Cj (i 6= j) in CCS we have

���Rclicli [m]��� = 0 if 1 � jmj � Z (25)���Rcliclj [m]��� = 0 if 0 � jmj � Z (26)
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Figure 4: Example periodic cross-correlations for quadratic-phase sequences.

7 Cyclically Shifted CAZAC Sequence Codebooks

Let 	 = f 1;  2; : : : ;  Mg denote a set of positive integers where for all i; j 2 f1; 2; : : : ;Mg we have
 i 6=  j and 0 �  i < K � 1. Using these values and ci[k] as de�ned above we de�ne the cyclically shifted
codebook

S = fS1;S2; : : : ; CMg (27)

where M � K and

Si =
n
Ci1 = fci[k +  1modK]gK�1k=0 ; : : : ; CiM = fci[k +  M modK]gK�1k=0

o
(28)

Hence by Property 5 each Si in S is a CAZAC sequence cyclically shifted by  i samples. The cyclically
shifted CAZAC sequence codewords are orthogonal.

8 Cell Identi�cation

Figure 5 shows how a SCH symbols may be generated using a cell-speci�c codebook. The outputs of the DL-
MIMO precoder are mapped by a Subcarrier Mapper to an allocated set of P-SCH or S-SCH subcarriers. In
the frequency domain, each SCH symbol may be mapped to contiguous or non-contiguous equally-spaced
subcarriers that may comprise a subcarrier set. The speci�c mapping is for future study. Depending on
the allocated bandwidth the length of the IFFT may be di¤erent. The P-SCH may use the same set of
contiguous or non-contiguous subcarriers for all possible 802.16m bandwidths. For example, SCH symbols
may be mapped to the top portion or subcarriers in all allowed 802.16m channel bandwidths. To enable
repetition encoding and improved synchronization SCH symbols may be transmitted several times during
one transmit time interval. The SCH symbols may be transmitted at equal or unequal intervals. The
number of symbols is a design parameter whose value is for future study.
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Figure 5: Conceptual block diagram showing base station SCH construction and signal processing.
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symbol. Preamble or P-SCH should contain at least 4 repeated (6 is desirable) CAZAC sequence symbols
for noise/interference averaging and rapid gain acquisition.
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8.1 Cell Identi�cation via the P-SCH

If only a primary SCH is used a single-stage detection procedure may be used for cell/sector identi�cation.
Let

C = fC1; C2; : : : ; CMg (29)

denote an SCH codebook of length M � K. As a function of C the cell/sector identi�er for the pth
cell/sector may be de�ned as

Cell_IDp(C) = f(C1; C2; :::; CM ) (30)

p 2 f1; 2; : : : ; NCellsg (31)

The one-to-one function f may be a simple look-up table that maps the indices of detected codewords
C1; C2; : : : ; CM to a unique cell identi�er. From combinatorics the maximum number of cells/sectors
NCells that can supported by the codebook C is de�ned as

NCells =MM (32)

Note that NCells equals the number of permutations (with repetition) of the codewords in C. For example,
if M = 2 the following four unique cell/sector IDs are possible

Cell_ID1 = f(C1; C1) (33)

Cell_ID2 = f(C1; C2) (34)

Cell_ID3 = f(C2; C1) (35)

Cell_ID4 = f(C2; C2) (36)

If M = 4, 5 and 6 and we have NCells = 256; 3125 and 46656 which shows the exponential increase. Hence
a small codebook size is su¢ cient. This allows the codewords can be n-fold repetition encoded to increase
detection probability.

8.2 Cell Identi�cation via the P-SCH and S-SCH

If both a primary and secondary SCH are used the number of supported cells/sectors can be increased
without increasing the number of cross-correlation operations for detection. In this approach a two-stage
detection procedure may be used.

In the �rst-stage detection one of the M � K codewords in the codebook C is detected from received
P-SCH symbols. As shown in Figure 6 and 7 the codeword may be n-fold repetition encoded to increase
detection probability.

In the second-stage detection, one or more cyclically-shifted versions of the detected codeword are
detected from received S-SCH symbols. As shown in Figure 7 the cyclically-shifted codeword may also be
n-fold repetition encoded to increase detection probability.

A cell/sector identi�er is de�ned by the combined indices of the detected codeword and the detected
cyclic-shift of the codeword. As a function of the SCH codebook C and cyclically shifted codebook S the
identi�er for the pth cell/sector may be de�ned as

Cell_IDp(C;S) = f(Ci; Si1; Si2; :::; SiM ) (37)

p 2 f1; 2; : : : ; NCellsg (38)
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The one-to-one function f may be a look-up table that maps the detected indices i and i1; i2; : : : ; iM to a
cell identi�er Cell_IDp. The number of cells NCells that can supported by the codebook C is de�ned as

NCells =M �MM =MM+1 (39)

As an example let the CAZAC sequence length K be an even number and let the codebook size be
M = 2. Let 	 = f 1;  2g denote a pair of positive cyclic shift integers where for i; j 2 f1; 2g we have
 i 6=  j and 0 �  i < K � 1. The SCH codebook is then

C = fC1; C2g (40)

where the orthogonal codewords are de�ned as the CAZAC sequences

C1 = fc1[k]gK�1k=0 =
n
ej

�
K
k(k�2)

oK�1
k=0

(41)

C2 = fc2[k]gK�1k=0 =
n
ej

�
K
k(k�4)

oK�1
k=0

(42)

The corresponding cyclically shifted codewords are de�ned as

S1 = fS11; S12g (43)

S2 = fS21; S22g (44)

where

Sij =
�
ci[k +  j modK]

	K�1
k=0

; i; j 2 f1; 2g (45)

Note that the �rst index i denotes the codeword and the second index j the cyclic shift of the codeword.
Hence the following eight unique cell/sector IDs are possible

Group 1:

8>><>>:
Cell_ID1 = f(C1; S11; S11)
Cell_ID2 = f(C1; S11; S12)
Cell_ID3 = f(C1; S12; S11)
Cell_ID4 = f(C1; S12; S12)

(46)

Group 2:

8>><>>:
Cell_ID5 = f(C2; S21; S21)
Cell_ID6 = f(C2; S21; S22)
Cell_ID7 = f(C2; S22; S21)
Cell_ID8 = f(C2; S22; S22)

(47)

The �rst group are the possible choices when C1 is �rst-stage detected from the P-SCH. The second
group are the possible choices when C2 is �rst-stage detected from the P-SCH. The second-stage detection
then uses C1 or C2 (whichever is detected in �rst-stage) to detect the values Sij from the S-SCH symbol.
Once the CAZAC sequence codeword Ci and the cyclically time-shifted codeword Sij are known the unique
cell identi�er Cell_IDi is known via the one-to-one function f (e.g. a lookup table).

The two-stage process does not increase the number of cross-correlation operations. More speci�cally,
using the example above it can be seen that the �rst stage requires 2 cross-correlations to detect either C1
or C2. Once C1 or C2 is detected the second stage requires 4 cross-correlations to detect the cyclic shifts
of the detected codeword C1 or C2. Hence the total number of cross-correlations for cell identi�cation is
6. To support the same number of identi�ers using the single-stage approach we would have
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Cell_ID1 = f(C1; C1; C1) (48)

Cell_ID2 = f(C1; C1; C2) (49)

Cell_ID3 = f(C1; C2; C1) (50)

Cell_ID4 = f(C1; C2; C2) (51)

Cell_ID5 = f(C2; C1; C1) (52)

Cell_ID6 = f(C2; C1; C2) (53)

Cell_ID7 = f(C2; C2; C1) (54)

Cell_ID8 = f(C2; C2; C2) (55)

If only a single-stage detection is used a total of 6 cross-correlations are required, two for each of the values
in the function arguments.
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