Differential Feedback for 802.16m Beamforming

Qinghua Li, Shanshan Zheng, Jiacheng Wang, Xiaofeng Liu, Feng Zhou, Eddie Lin, Guangjie Li, Yang-seok Choi

01/13/2009

Outline

- Overview of differential schemes
 - Rotation based
 - Codeword hopping based
- Simulation results
- Conclusion

Reference

- [1] IEEE C802.16m-08/1182r3, "Codebook Design for IEEE 802.16m MIMO Schemes."
- [2] IEEE C802.16m-08/1109, "DL SU-MIMO codebooks."
- [3] IEEE C802.16m-08/1095r1, "Differential Precoding Codebook."
- [4] IEEE C802.16m-08/1187, "Evaluation of CL SU and MU MIMO Codebooks."
- [5] IEEE C802.16m-09/0024, "Simplified Differential Feedback Method for IEEE 802.16m CL SU/MU-MIMO."
- [6] IEEE C802.16m-08/1074r1, "Evaluation of Codebook and Differential Feedback for DL Closed-Loop SU-MIMO."

System Model

$$\mathbf{y} = \mathbf{H} \hat{\mathbf{v}} \mathbf{s} + \mathbf{n}$$

- \mathbf{H} is channel matrix of dimension $N_r \times N_t$.
- $\hat{\mathbf{V}}$ is beamforming matrix of dimension $N_t \times N_s$.
- **s** is transmitted signal vector of dimension $N_s \times 1$.

Rotation Based Scheme

Rotation Scheme I

• Differentiation at SS: $\mathbf{D} = \mathbf{Q}^H(t-1)\mathbf{V}(t)$

• Quantization at SS:
$$\hat{\mathbf{D}} = \underset{\mathbf{D}_i \in C_d}{\operatorname{arg max}} \left\| \mathbf{D}^H \mathbf{D}_i \right\|_F$$

Beamforming matrix reconstruction at BS:

$$\hat{\mathbf{V}}(t) = \mathbf{Q}(t-1)\hat{\mathbf{D}}$$

• Beamforming at BS: $\mathbf{y} = \mathbf{H} \, \hat{\mathbf{V}}(t) \mathbf{s} + \mathbf{n}$

[1],[2], and [3] use this scheme for differential feedback.

Rotation Scheme II

SS always feeds back for maximum number of streams.

- $\hat{\mathbf{V}}$ and \mathbf{D} are square matrix of dimension $N_t \times N_t$. [4] [5] use this scheme.

- Differentiation at SS: $\mathbf{D} = \mathbf{V}(t)\mathbf{Q}^H(t-1)$
- Quantization at SS: $\hat{\mathbf{D}} = \underset{\mathbf{D}_i \in C_d}{\operatorname{arg max}} \left\| \mathbf{D}^H \mathbf{D}_i \right\|_F$
- Beamforming matrix reconstruction at BS:

$$\hat{\mathbf{V}}(t) = \hat{\mathbf{D}} \mathbf{Q}(t-1)$$

•Beamforming at BS:
$$\mathbf{y} = \mathbf{H} \, \hat{\mathbf{V}}(t) \mathbf{s} + \mathbf{n}$$

Scheme I has a compacter codebook than scheme II because of reduced dimension.

Differential codebook of scheme I

Polar cap

Differential matrix space

Differential codebook of scheme II

Codeword Hopping [6]

- Each codeword has a list of 8 closest neighbors.
- Next beamforming matrix is selected from the 8 neighbors.
- Beamforming accuracy is worse than that the non-differential scheme using the whole codebook.

SLS Results for **SU-MIMO**

- Differential outperforms non-differential.
- Rotation scheme I is better than codeword hopping.

	Uncorrelated channels	Highly correlated channels
16e 6-bit codebook (b/s/Hz)	6.7217	7.2527
Rotation scheme I, 3-bit differential [1] (b/s/Hz)	6.7706	7.5414
Codeword hopping, 3-bit differential [6] (b/s/Hz)	< 6.7217	< 7.2527
SE gain of rotation scheme I [1] over codeword hopping [6]	> 0.73%	> 3.98%

Differential vs. non-differential

- Rotation scheme II outperforms non-differential.
- Improvement due to differential feedback decreases as correlation for rotation scheme II with DFT codebook.

	Uncorrelated channels	Weakly correlated channels	Highly correlated channels
DFT 4-bit codebook (b/s/Hz)	6.4855	6.8481	7.5046
Rotation scheme II, 4-bit differential [4] (b/s/Hz)	6.7177	7.0519	7.5060
SE gain of rotation II [4] over non-differential	3.58%	2.98%	0.02%

Rotation scheme I vs. rotation scheme II

- Rotation scheme I outperforms rotation scheme II in terms of throughput and overhead.
- Scheme I is tailored to stream number while Scheme II is not.

	Uncorrelated channels	Highly correlated channels
Rotation scheme I [1] (b/s/Hz)	6.7706	7.5414
Rotation scheme II [4] (b/s/Hz)	6.7177	7.5060
SE gain of scheme I [1] over scheme II [4]	0.79%	0.47%
Overhead comparison: [1] vs. [4]	3.3 bits : 4 bits	3.3 bits : 4 bits

SLS Results for MU-MIMO

- Differential outperforms non-differential.
- Rotation scheme I is better than codeword hopping.

	Uncorrelated channels	Weakly correlated channels	Highly correlated channels
16e 6-bit codebook (b/s/Hz)	6.3643	6.903	7.6895
Rotation scheme I, 3-bit differential [1] (b/s/Hz)	6.6172	7.5492	9.766
Codeword hopping, 3-bit differential [6] (b/s/Hz)	< 6.3643	< 6.903	< 7.6895
SE gain of rotation scheme I [1] over codeword hopping [6]	> 3.97%	> 9.36%	> 27.0%

Rotation scheme I vs. rotation scheme II

 Rotation scheme I outperforms rotation scheme II in terms of throughput and overhead.

	Uncorrelated channels	Weakly correlated channels	Highly correlated channels
Rotation scheme I [1] (b/s/Hz)	6.6993	8.0027	11.3129
Rotation scheme II [4] (b/s/Hz)	6.6766	7.7787	10.1239
SE gain of scheme I [1] over scheme II [4]	0.34%	2.88%	11.74%
Overhead comparison: [1] vs. [4]	3.53 bits : 4 bits	3.53 bits : 4 bits	3.53 bits : 4 bits

Conclusions

- Differential outperforms non-differential.
- Rotation schemes have higher throughput than codeword hopping.
- Rotation scheme I has smaller quantization errors than rotation scheme II because of compacter codebook.