Proposal for generic channel model in 802.16m

Andreas F. Molisch, Jinyun Zhang MERL

Toshiyuki Kuze Mitsubishi

I-Kang Fu, Chi-Fang Li, Ting-Chen Song ITRI

Hongyun Qu ZTE

Channel Model Requirements: Link level vs. system level

Link level

Impulse responses for all antenna combinations

System level

Types of description methods

- Double-directional
 - Channel-centric
 - Array-independent

TRANSFER FUNCTION MODEL

- Transfer functions
 - Antenna centric
 - Array-dependent

Comparison of description methods

Double-directional model

- Describe amplitude, delay, DOA, DOD of MPCs
- Independent of antenna configuration
- Equivalent to scatter location

$$h(\tau,\Omega_R,\Omega_T) = \sum_{i=1}^N h(\tau_i,\Omega_{R,i},\Omega_{T,i}) = \sum_{i=1}^N a_i e^{j\phi_i} \delta(\tau-\tau_i) \cdot \delta(\Omega_R-\Omega_{R,i}) \delta(\Omega_T-\Omega_{T,i}).$$

Transfer function matrix

- From each transmit to each receive antenna element
- Depends on antenna configuration

$$h(\tau, x_R, x_T) = \sum_{i=1}^{N} h(\tau_i, \Omega_{R,i}, \Omega_{T,i}) \cdot g_R(\Omega_R) g_T(\Omega_T) \cdot e^{j\langle \vec{k}(\varphi_{R,i})\vec{x}_R \rangle} e^{j\langle \vec{k}(\varphi_{T,i})\vec{x}_T \rangle}$$

Conversion:

- can always get from DD to transfer matrix, but not vice versa.
- Transfer function cannot be generalized to different antenna configuration

Types of models

- Deterministic
- Purely stochastic
- Geometry-based stochastic

Deterministic models

- Stored measured impulse response or ray tracing
- Advantages:
 - good agreement with physically existing results (site-specific)
 - reproducible
- Problems:
 - need not be typical
 - large data bases required
 - expensive to produce
 - parameters cannot be changed easily
- Conclusion:

suitable for site-specific modeling, but not system development

Stochastic channel models

Multidimensional probability density function of CIR

Advantage: fast

Problem:

difficult to parametrize over large areas

Standard WSSUS model – tapped delay line realization

Generalization to spatial dimension

Geometry-based stochastic channel model (GSCM)

- Prescribe probability density function of scatterers
- Specular reflection
- Simple ray tracing
- High-rise building groups (urban) or mountains (rural)
 - Increase of temporal and angular dispersion
 - Far scatterers fixed in space
- Advantage:

Better for large areas

Problem:

Slightly slower for small-scale computations

Temporal evolution - GSCM

- Temporal evolution of channel easily implemented
- Correlation between changes of DOAs, delays, etc. implicit; Correlation between signals at antenna elements also implicit

Existing models

- COST 259: good basis
- 3GPP: widely accepted subset of COST 259, only small number of environments
- 802.11n: for indoor, but no elevation, no polarization
- COST 273: parameterization not complete
- Winner: good 100 MHz MIMO measurements, but some extracted parameters are questionable

Suggested model and model parameters

- Use cluster-based model
 - Easier to parameterize
 - Follows model of 3GPP, COST 259, COST 273
- Define environments of interest
 - Should include peer-to-peer, outdoor-to-indoor, ...
- Set of parameters
 - See MS-Word document

Summary and conclusion

- Recommend to use model that is
 - Stochastic (with geometric component)
 - Double-directional (with possible example realization of transfer function)
 - Cluster-based
- Define all environments of interest
- Parameterization in the environments should be done by concerted effort until May

THANK YOU!