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Conceptual Downlink MIMO Model
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BS Transmit Signal
 Let NT denote the number of BS transmit antennas.

 Let Kactive denote the number of active MSs serviced by a BS.

 Let NS,k  minNT, NR,k denote the number of independent streams allocated to the kth active MS.
NR,k  1 denotes the number of receive antennas for the kth MS.

 The total number of streams transmitted by the BS is the sum

NS  
j1

Kactive

NS,j

 The composite signal transmitted by the BS is defined as the NT-by-1 vector

x  
j1

Kactive

WjP js j

where Wk is the NT-by-NS,k linear precoding matrix, Pk an NS,k-by-NS,k diagonal stream power loading
matrix, and sk an NS,k-by-1 data symbol vector.



Received Signal for kth MS
 Let NR,k  1 denote the number of receive antennas for the kth MS.

 The total number of receive antennas distributed over all Kactive MSs is

NR  
j1

Kactive

NR,j

 The received signal for the kth MS is the NR,k-by-1 vector
yk  Hkx  nk

 HkWkPksk  Hk 
j1,jk

Kactive

WjP js j  nk

 The NR,k-by-NT matrix Hk denotes the channel matrix for the kth MS. The i, jth element of Hk
represents the channel gain and phase associated with the signal path from BS transmit antenna j to MS
receive antenna i. The MIMO channel matrices Hk, k  1, 2, , Kactive, are assumed to be uncorrelated
and of full rank.



BS Computations for kth MS's Precoder (1)

 The received signal for the kth MS is the NR,k-by-1 vector
yk  Hkx  nk

 HkWkPksk  Hk 
j1,jk

Kactive

WjP js j  nk

 The co-channel interference term can be eliminated if

Hk 
j1,jk

Kactive

Wj  0

 Given the MS’s MIMO channel matrices the BS constructs the MR,k-by-NT matrix

H k  H1
T  Hk1

T Hk1
T  HKactive

T
T

where MR,k  NR  NR,k.



BS Computations for kth MS's Precoder (2)

 The BS computes the singular value decomposition of the MR,k-by-NT matrix H k which is defined as

H k  Ũk kV k
H

 Matrices Ũk and V k are MR,k-by-MR,k and NT-by-NT unitary matrices. Matrix  k is an MR,k-by-NT singular
value matrix.

 Jacobi rotations can be used to compute the singular value decomposition of matrix H k. MR,k  NR  NR,k
and NR,k are small (e.g. MR,k  4 and NT  4) so the BS computations for H k are practical BS
computations.



BS Computations for kth MS's Precoder (3)

 From V k the BS constructs the NT-by-NT  MR,k matrix

V k
0
 v k,MR,k1  v k,NT1 v k,NT

 The orthonormal vectors within V k
0 form an orthonormal basis for the null space of H k hence HjV k

0
 0

for all j  k.

 A condition for the NT-by-NT  MR,k matrix V k
0 to exist is that

NT  MR,k  NR  NR,k



BS Computations for kth MS's Precoder (4)

 Hence to ensure that NT  MR,k the number of BS transmit antennas NT must be as large as the total
number of receive antennas NR for all active MSs.

 We let NT  NR and NR,k  NS,k then the column dimension of V k
0 becomes NT  MR,k  NS,k. The BS

sets the precoder matrix for the kth MS to be the NT-by-NS,k matrix

Wk  V k
0

 The equality HkWj  0 will be true for all j  k. Hence the co-channel interference term can be
eliminated and the received signal for the kth MS will be

yk  HkWkPksk  nk



MS Grouping for Selective-MS Precoding (1)

 The proposed method requires full rank MIMO channel matrices Hk, k  1, 2, , Kactive.

 The full rank MIMO channel matrices Hk must also be uncorrelated.

 These conditions assure that precoder design matrix H k defined above will have full rank.

 Selective-MS precoding will help assure that these conditions are met. It will also decrease the number of
BS computations required for precoding.

 In selective-MS precoding a subset of the Kactive active MSs is selected or scheduled to receive data for a
DL subframe. The selected subset is called an MS spatial group.



MS Grouping for Selective-MS Precoding (2)

 A spatial MS grouping of active MSs is a set partition
G  G1, G2, , GNG 

where G i denotes an MS spatial group and NG the number of groups.

 Each MS spatial group G i is a subset of the active MS set

M  MS1, MS2, , MSKactive   
i1

NG

G i

where MS i denotes the ith active MS.

 The total number of MS receive antennas NR associated with a spatial group G i must be less than or equal
to NT (i.e. NR  NT constraint above). The MS spatial groups are disjoint.



MS Grouping for Selective-MS Precoding (3)

 MSs within a group Gi will have uncorrelated channels H k .
- MSs with channel cross correlations that are below a pre-defined threshold are placed in the

same MS group.
- MSs that have highly correlated channels are placed into different spatial MS groups.

 MSs within a spatial MS group can share the same physical layer resource units within a subframe.
Hence an increase in spectral efficiency .

 The larger an MS group the greater the gain in spectral efficiency and throughput. On the other
hand, smaller MS groups allow the BS to transmit with higher average power per MS.

 Finding the optimum MS grouping G requires a comparison between all possible MS groups. This
may not be practical so reduced complexity algorithms are required to find a sub-optimal MS
grouping. Many sub-optimal MS grouping algorithms are proposed in the literature.
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Open-loop Selective-MS Precoding
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Closed-loop Selective-MS Precoding
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Proposed Text
11. Physical Layer

11.x Downlink MIMO

11.x.y. Downlink MIMO Adaptation
To provide spatial multiplexing (SM) and spatial diversity (SD) gains in numerous radio environments, BSs and MSs will be

able to switch between DL MIMO techniques depending on downlink MIMO channel conditions. By switching between DL
MIMO techniques an IEEE 802.16m system can dynamically optimize spectral efficiency and/or coverage for a specific radio
environment.

11.x.y Downlink Precoding
Open- and closed-loop precoding techniques may be used to increase the spectral efficiency of downlink transmissions. Using

precoding identical physical layer resource units (PRUs) may be used to transmit different downlink data. The identical PRUs may
be concurrently transmitted to one or more MSs. Linear precoding may be combined with other MIMO techniques designed for
SM gain or SD gain.

11.x.z Selective-MS Downlink Precoding
Open- and closed-loop selective-MS precoding are BS-centric precoding techniques that eliminate co-channel interference

between MSs concurrently receiving downlink data. Since selective-MS precoding is base station centric it may also be used to
facilitate BS-to-BS cooperation techniques for interference mitigation.

In selective-MS precoding a BS groups its active MSs into disjoint subsets called MS spatial groups. MSs within the same MS
spatial group will have uncorrelated downlink MIMO channels. MSs that have highly correlated downlink MIMO channels will
placed into different spatial MS groups. Different precoding matrices will be assigned to all MSs within an MS spatial group. MSs
within a spatial MS group may share the same physical layer resource units (PRUs). The allocated PRUs may be concurrenly
transmitted thereby increasing downlink spectral efficiency. For each downlink subframe a BS scheduler will select which of the
MS spatial groups will be allocated available PRUs.
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