Inter-Cell Interference Management in DL/UL Control

Document Number: S802.16m-08/443r4

Date Submitted: 2008-05-05

Source:

Yih-Guang Jan, Yang-Han Lee, E-mail: yihjan@ee.tku.edu.tw

Ming-Hsueh Chuang, Hsien-Wei Tseng,

Wei Chen Lee, Wei-Chieh Tseng

Tamkang University (TKU)

Shiann-Tsong Sheu stsheu@ce.ncu.edu.tw

National Central University (NCU)

Pei-Kai Liao, Paul Cheng pk.liao@mediatek.com

MediaTek Inc.

Yu-Tao Hsieh, Pang-An Ting ythsieh@itri.org.tw

ITRI

Venue:

IEEE 802.16m-08/016r1: Call for Contributions on Project 802.16m System Description Document (SDD).

Target topic: "Uplink Control Structures".

Base Contribution:

C802.16m-08/443r3

Purpose:

To be discussed and adopted by TGm for the 802.16m SDD.

Notice:

This document does not represent the agreed views of the IEEE 802.16 Working Group or any of its subgroups. It represents only the views of the participants listed in the "Source(s)" field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein.

Release:

The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

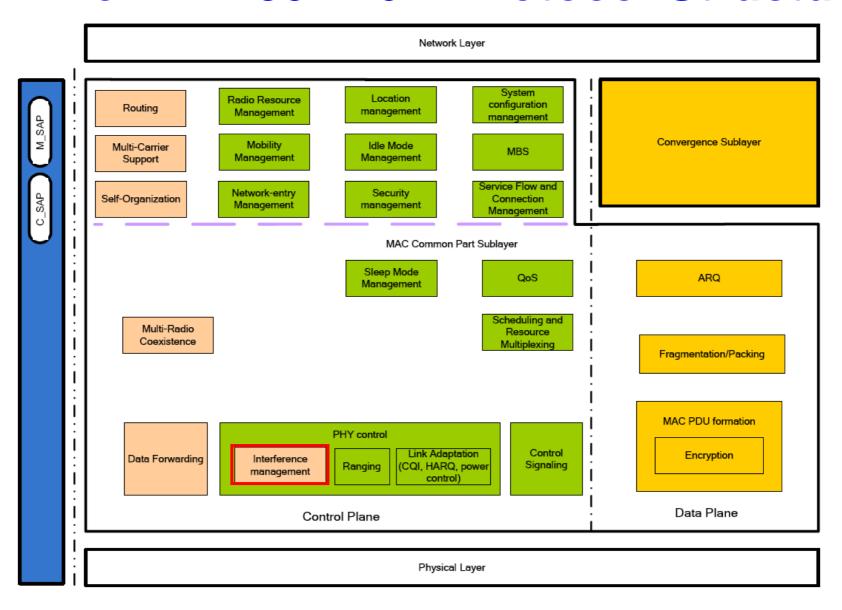
Patent Policy:

The contributor is familiar with the IEEE-SA Patent Policy and Procedures:

http://standards.ieee.org/guides/bylaws/sect6-7.html#6 and http://standards.ieee.org/guides/opman/sect6.html#6.3.

Further information is located at http://standards.ieee.org/board/pat-material.html and <a hre

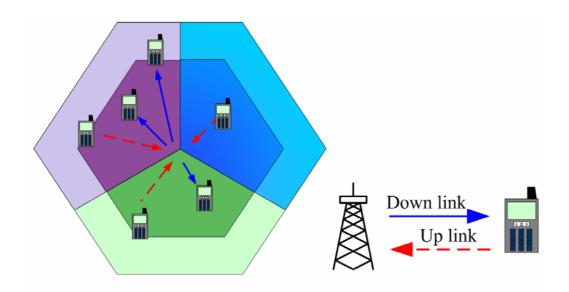
Introduction

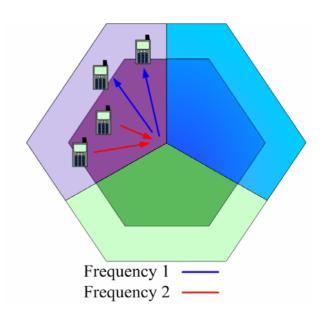

Purpose

 Propose several pilot formats for Interference Management to reduce interference at Cell edge or Co-channel between BS and BS, BS and MS or MS and MS.

Scope

- DL and UL control channel design for Interference Management
 - Cell edge zone
 - Interference reducing pilot
 - Cell central Zone
 - Common Pilot
- Interference Management on TDD and FDD frame structure
 - Sub-Frame base design
- Interference Management on different frequency reuse factor

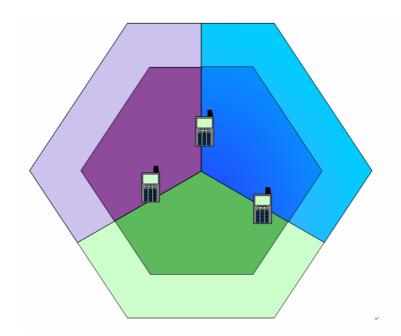

The IEEE 802.16m Protocol Structure

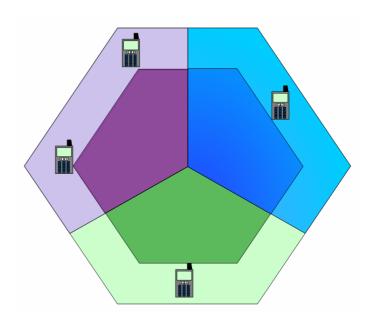


Interference Type: Data Transition

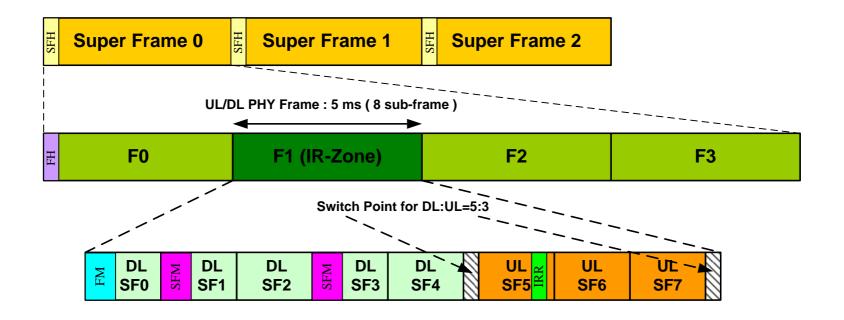
Data Transition Interference in TDD

Data Transition Interference in FDD

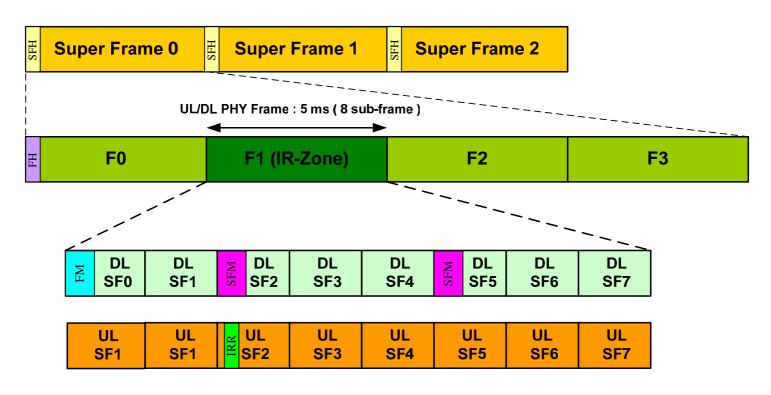




Interference Type: Sector and Cell Edge


Location-oriented interference: MS at the sector boundary

Location-oriented interference: MS in the cell edge zone



Frame Control Channel Structure for 16m (1/3)

Control channel structure for TDD

Frame Control Channel Structure for 16m (2/3)

Control channel structure for FDD

Frame Control Channel Structure for 16m (3/3)

Five types of control channels

– SFH (Super Frame Header):

 The SFH is used for the transmission of the information such as the synchronization, frequency reference, cell ID etc.

– FH (Frame Header):

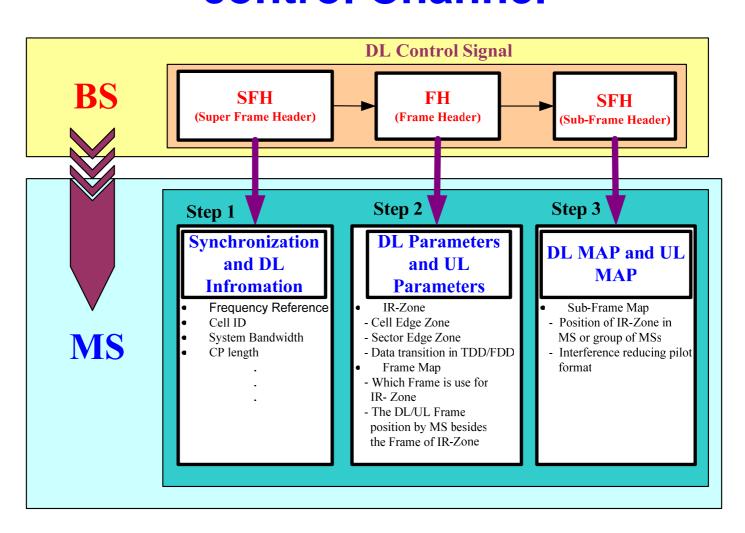
 The FH will identify which frame should activate an IR-Zone, and when this IR-Zone is activated the MS in this zone will receive the interference reducing service.

– FM (Frame Map):

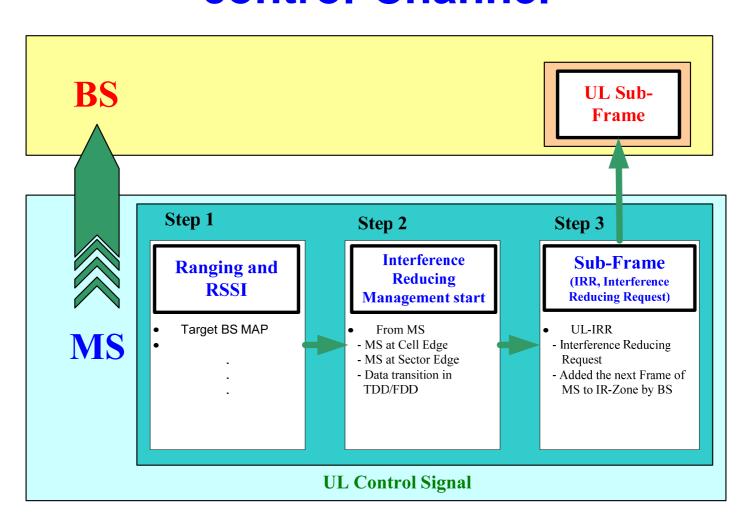
• This FM is used to designate MSs locations in the sub-frame for those MSs are not in the interference-reducing zone (IR-Zone).

– SFM (Sub-frame Map):

 The SFM is used to designate which MSs in this zone need the interference reducing service. The MS designated can be a group of MSs or a single MS. It gives MS the information of the zone location, the orthogonal pilot pattern and it also will provide the relative location information of the UL- zone.

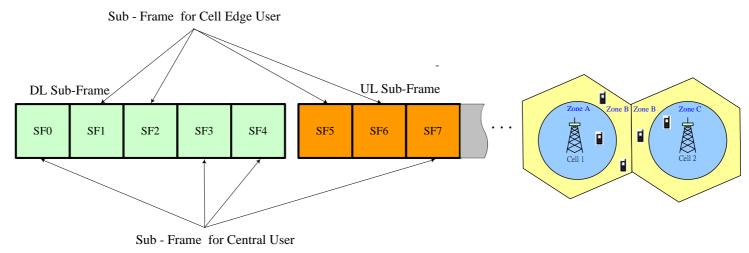

– IR-Zone (Interference Reducing Zone):

This zone is activated by the BS and it can be divided into UL and DL IR-zones. The
zone's size and location are designated by the FH and the SFM and it also serves those
MSs that need interference reducing services.

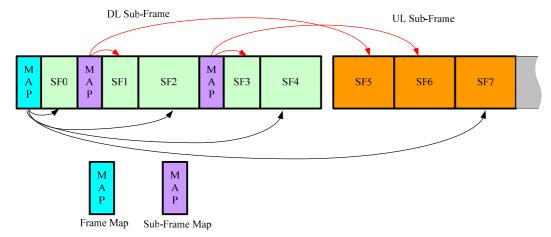

UL-IRR (Uplink-interference Reducing Request):

• The MS will send the instant interference reducing request in this frame and the BS will include this MS which sends this request in the IR-Zone in the next frame.

Cell Management Information in the DL control Channel

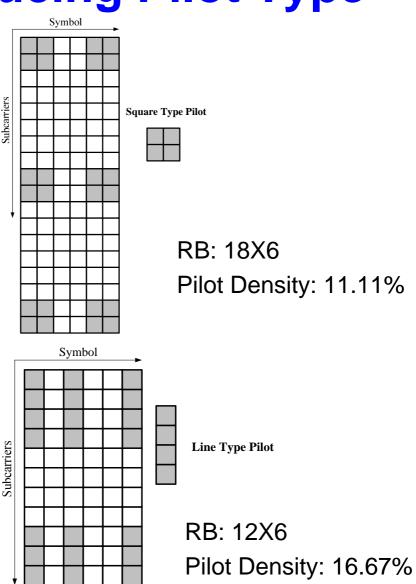


Cell Management Information in the UL control Channel



Interference Reducing for Sub-Frame

Different sub-frames are allocated for users with different levels of interferences

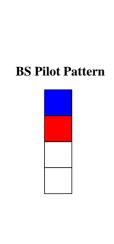

MAP Define for Cell Edge User and Central User

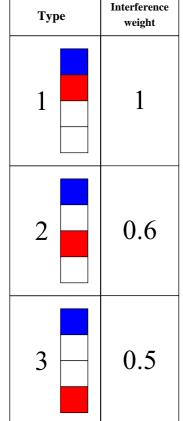
Interference Reducing Pilot Type

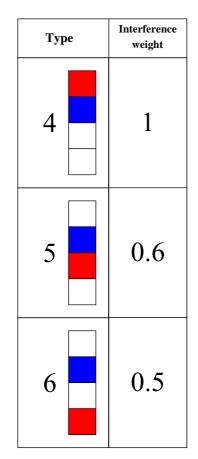
Square Type Pilot

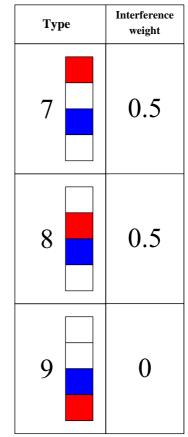
Line Type Pilot

Interference weight assignment for Square type pilot pattern (1/2)

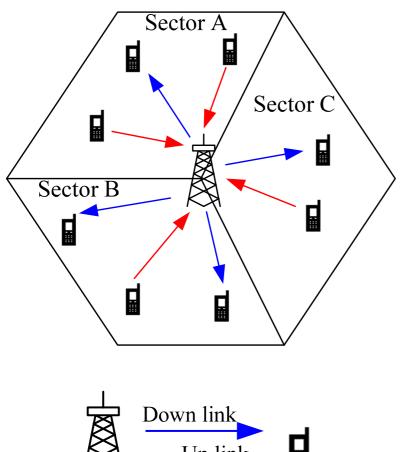


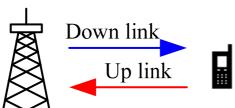

Туре	Interference weight	Туре	Interference weight
1	1	7	0.2
2	0.6	8	0.6
3	0.5	9	0
4	0.8	10	0.5
5	0.4	11	0.4
6	0.5	12	0.5


Interference weight assignment for Square type pilot pattern (2/2)


IR Pilot_MT Pilot_BS	1	2	3	4	5	6	7	8	9	10	11	12
1	1	0.6	0.5	0.8	0.4	0.5	0.2	0.6	0	0.5	0.4	0.5
2	0.6	1	0.5	0.4	0.8	0.5	0.6	0.2	0.4	0.5	0	0.5
3	0.5	0.5	1	0.5	0.5	1	0.5	0.5	0.5	0	0.5	0
4	0.8	0.4	0.5	1	0.6	0.5	0	0.4	0.2	0.5	0.6	0.5
5	0.4	0.8	0.5	0.6	1	0.5	0.4	0	0.6	0.5	0.2	0.5
6	0.5	0.5	1	0.5	0.5	1	0.5	0.5	0.5	0	0.5	0
7	0.2	0.6	0.5	0	0.4	0.5	1	0.6	0	0.5	0.4	0.5
8	0.6	0.2	0.5	0.4	0	0.5	0.6	1	0.4	0.5	0.8	0.5
9	0	0.4	0.5	0.2	0.6	0.5	0	0.4	1	0.5	0.6	0.5
10	0.5	0.5	0	0.5	0.5	0	0.5	0.5	0.5	1	0.5	0.8
11	0.4	0	0.5	0.6	0.2	0.5	0.4	0.8	0.6	0.5	1	0.5
12	0.5	0.5	0	0.5	0.5	0	0.5	0.5	0.5	0.8	0.5	1

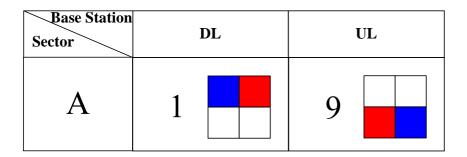
Interference weight assignment for Line type pilot pattern (1/2)

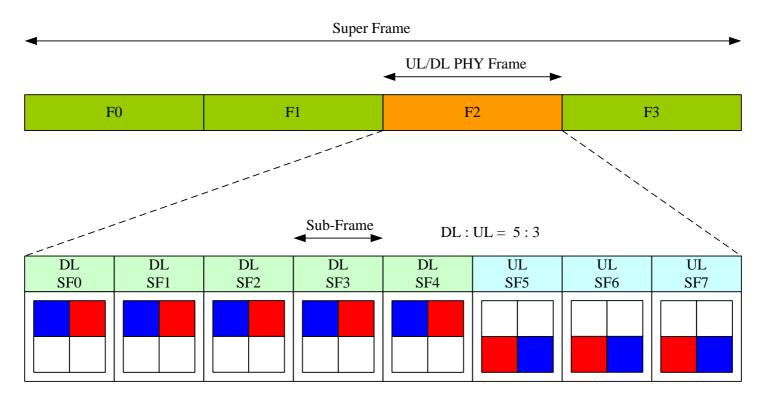


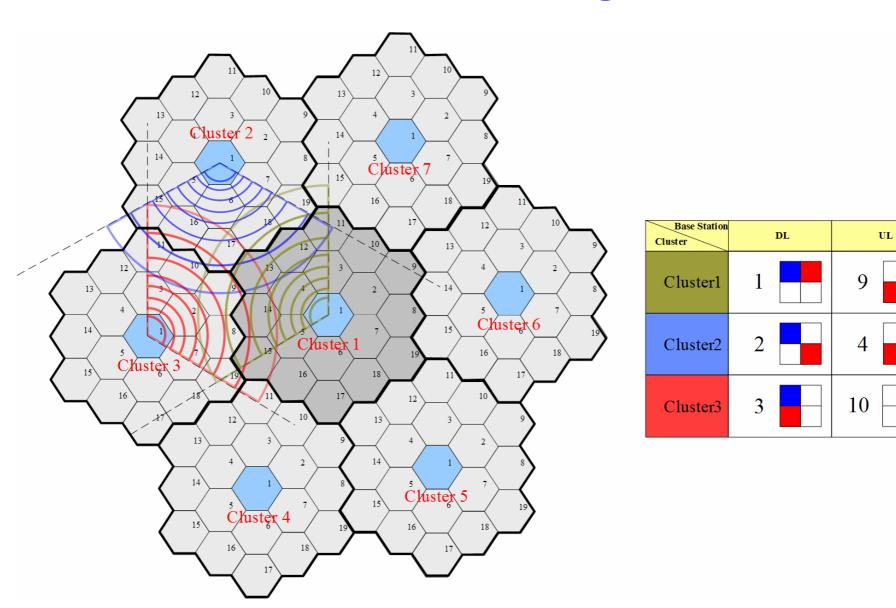

Туре	Interference weight
10	0.5
11	0.5
12	0.1

Interference weight assignment for Line type pilot pattern (2/2)

IR Pilot_MT Pilot_BS	1	2	3	4	5	6	7	8	9	10	11	12
1	1	0.6	0.5	1	0.6	0.5	0.5	0.5	0	0.5	0.5	0.1
2	0.6	1	0.6	0.5	0.6	0.2	0.8	0.5	0.5	0.4	0.1	0.5
3	0.5	0.6	1	0.5	0.2	0.6	0.4	0	0.5	0.8	0.4	0.5
4	1	0.5	0.5	1	0.5	0.5	0.6	0.6	0.1	0.5	0.5	0
5	0.6	0.6	0.2	0.5	1	0.6	0.5	1	0.6	0	0.5	0.5
6	0.5	0.2	0.6	0.5	0.6	1	0.1	0.5	0.6	0.4	0.8	0.5
7	0.5	0.8	0.4	0.6	0.5	0.1	1	0.6	0.5	0.6	0.2	0.5
8	0.5	0.5	0	0.6	1	0.5	0.6	1	0.5	0.2	0.6	0.6
9	0	0.5	0.5	0.1	0.6	0.6	0.5	0.5	1	0.5	0.5	1
10	0.5	0.4	0.8	0.5	0	0.4	0.6	0.2	0.5	1	0.6	0.5
11	0.5	0.1	0.4	0.5	0.5	0.8	0.2	0.6	0.5	0.6	1	0.6
12	0.1	0.5	0.5	0	0.5	0.5	0.5	0.6	1	0.5	0.6	1

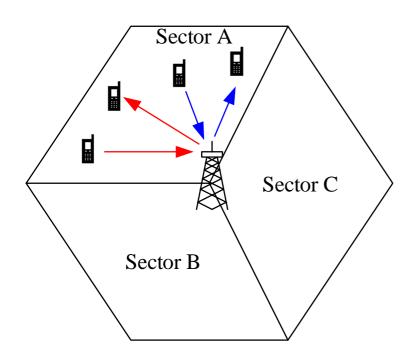

Pilot assignments in TDD segments




DL/UL Sector	DL	UL
A	1	9
В	2	4
С	3	10

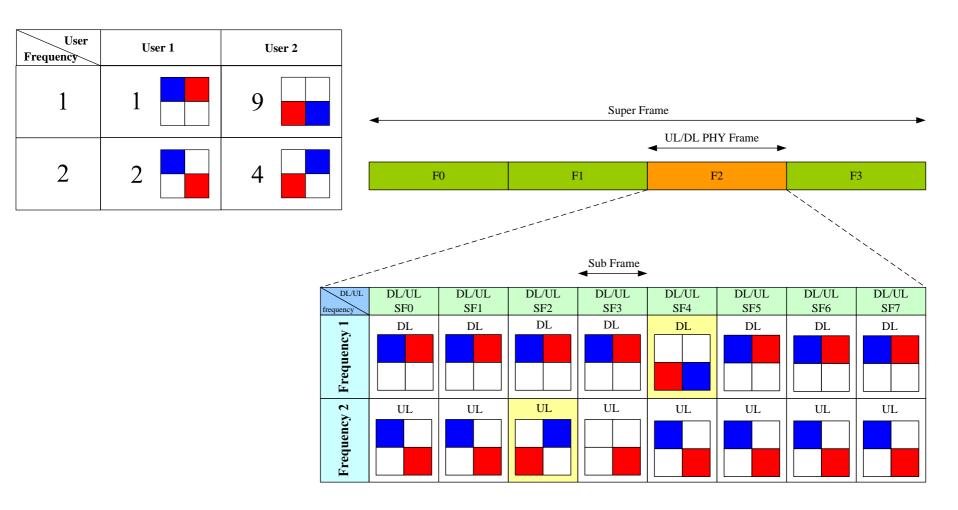
Pilots assignment in TDD subframes

Interferences in Pilots Assignment in TDD

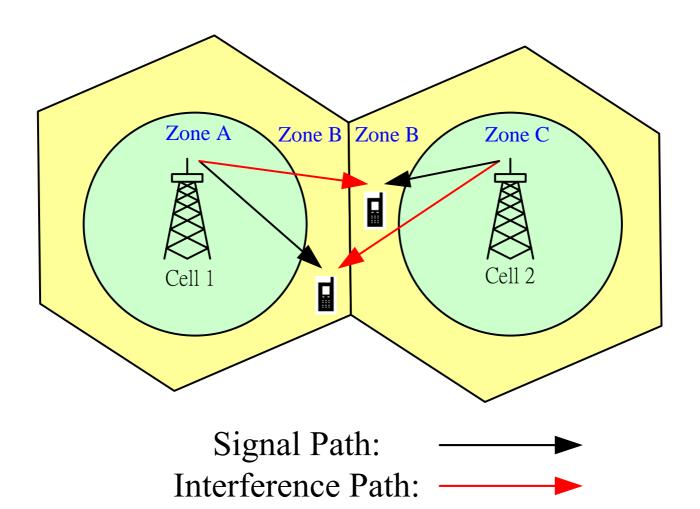


Interference weight between any two pilot types assigned for the DL and UL among three clusters

Base Station Cluster	DL	UL	
Cluster1	1	9	
Cluster2	2	4	
Cluster3	3	10	


Interference Weight		Cluster 1		Cluster 2		Cluster 3	
		DL	UL	DL	UL	DL	UL
Cluster	DL		0	0.6	0.8	0.5	0.5
1	UL	0		0.4	0.2	0.5	0.5
Cluster	DL	0.6	0.4		0	0.5	0.5
2	UL	0.8	0.2	0		0.5	0.5
Cluster	DL	0.5	0.5	0.5	0.5		0
3	UL	0.5	0.5	0.5	0.5	0	

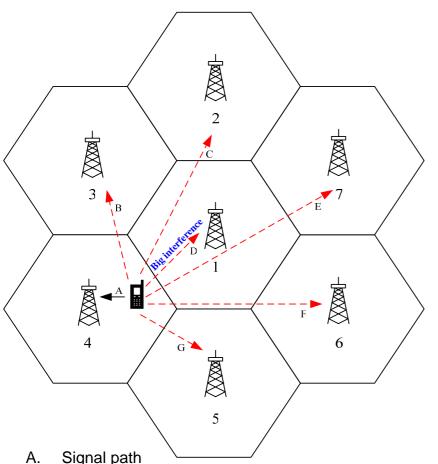
Pilot pattern assignment in FDD multiplexing



User Frequency	User 1	User 2
1	1	9
2	2	4

Pilot pattern assignment for down link and uplink subframes in FDD multiplexing

Cell edge interference


Orthogonal pilot pattern assignment for cell 1 and cell 2 when the MS is located at the cell edge

Base Station Case	Cell1	Cell2	Interference weihgt
A	1	9	0
В	2	4	0
С	3	10	0
D	4	7	0
Е	5	4	0
F	6	10	0

Using Interference Reducing Pilot structure by different BS

Parameter	Value
Carrier Frequency	2.5 GHz
System BW	10 MHz
BS Antenna Gain	17dB
MS Antenna Gain	0dB
BS height	32 M
MS height	1.5 M
Path Loss model	COST231 Hata model
Cell radius	500 M
Number of BS	7
Frequency reuse factor	1

Interference introduced from neighboring BSs to the MS

- B. Interference path (interference weight: 0.4)
- Interference path (interference weight: 0.5)
- Interference path (interference weight: 0)
- E. Interference path (interference weight: 0.5)
- F. Interference path (interference weight: 0.6)
- Interference path (interference weight: 0.2)

No. BS	Туре	Sensitivity (dBm)
4		-119.6224
1		-131.9415
5		-135.7063
3		-135.7182
6		-143.4239
2		-143.4282
7		-145.5291

Serving BS = No. 4

Target BS = No. 1

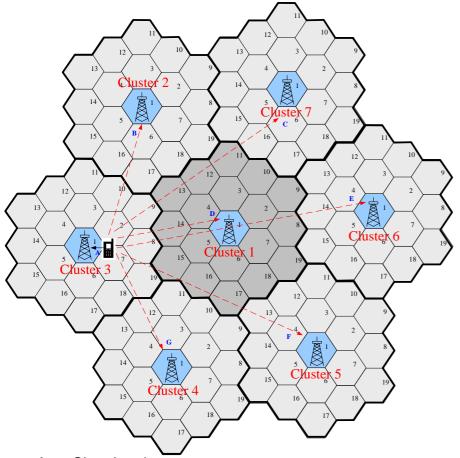
frequency reuse: 1

Resulting Interference levels by using and without using interference reducing pilots for BSs

IR Pilot

No. BS	Туре	Sensitivity (dBm)	Interference weight
1		-131.9415	0
2		-143.4282	0.5
3		-135.7182	0.4
5		-135.7063	0.2
6		-143.4239	0.6
7		-145.5291	0.5

Common Pilot


No. BS	No. BS	Sensitivity (dBm)	Interference weight
1		-131.9415	1
2		-143.4282	1
3		-135.7182	1
5		-135.7063	1
6		-143.4239	1
7		-145.5291	1

Pattern	Serving BS interference (dBm)	
IR Pilot	-136.4793	
Common Pilot	-128.8767	

Using Interference Reducing Pilot structure by different Cluster

Parameter	Vaiue	
Carrier Frequency	2.5 GHz	
System BW	10 MHz	
BS Antenna Gain	17dB	
MS Antenna Gain	0dB	
BS height	32 M	
MS height	1.5 M	
Path Loss model	COST231 Hata model	
Cell radius	500 M	
Cluster	7	
Number of BS	19	
Frequency reuse factor	19	

MS uses the same frequency to communicate with all cluster BSs

Α.	Signal	nath
А.	Signal	paui

- B. Interference path (interference weight: 0.5)
- C. Interference path (interference weight: 0.5)
- D. Interference path (interference weight: 0)
- E. Interference path (interference weight: 0.6)
- F. Interference path (interference weight: 0.2)
- G. Interference path (interference weight: 0.4)

Cluster	Туре	Sensitivity (dBm)
3		-135.4475
1		-156.5196
2		-158.5863
4		-158.5863
5		-166.6907
7		-166.6907
6		-168.8460

frequency reuse: 19

Resulting Interference levels by using and without using interference reducing pilots for BSs

IR Pilot Common Pilot

No. Cluster	Туре	Sensitivity (dBm)	Interference weight
1		-156.5196	0
2		-158.5863	0.5
4		-158.5863	0.4
5		-166.6907	0.2
6		-168.8460	0.6
7		-166.6907	0.5

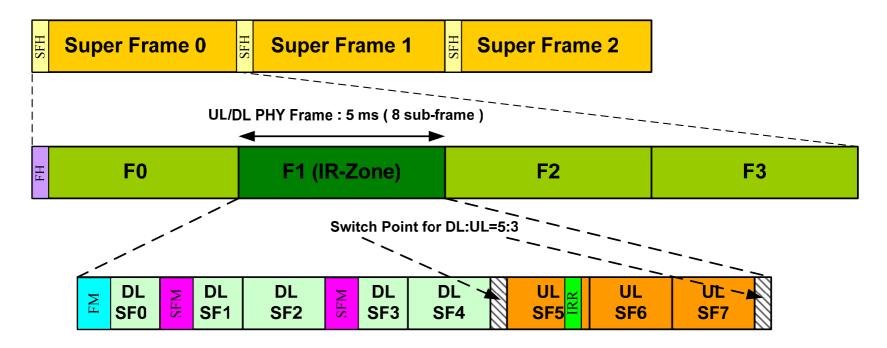
No. Cluster	No. BS	Sensitivity (dBm)	Interference weight
1		-156.5196	1
2		-158.5863	1
4		-158.5863	1
5		-166.6907	1
6		-168.8460	1
7		-166.6907	1

Pattern	Cluster interference (dBm)	
IR Pilot	-158.3135	
Common Pilot	-135.3844	

Summary

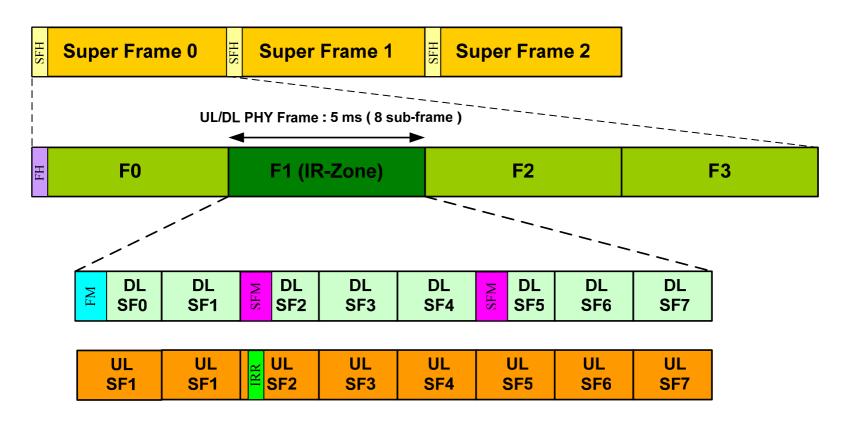
• When we introduced the interference reducing pilots for the various communication links we reduce the interference level by 7.5 dB for 7 base stations with frequency reuse factor 1 and the interference level reduce by 23 dB for 19 base stations when the use factor is 19.

Proposed Text for SDD (1/4)


11.X DL/UL control

11.X.1 Interference management

- 1) Frame structure for the control channel
 - Insert the following statements in the text
 - (1) SFH (Super Frame Header): the SFH is used for the transmission of the information such as the synchronization, frequency reference, cell ID etc
 - (2) FH (Frame Header): the FH will identify which frame should activate an IR-Zone (interference reducing zone), and when an IR-Zone is activated then the MS in this zone will receive the interference reducing service.
 - (3) FM (Frame Map): This FM is used to designate MSs locations in the sub-frame for those MSs are not in the interference-reducing zone (IR-Zone).
 - (4) SFM (Sub-frame Map): the SFM is used to designate which MSs in this IR-Zone need the interference reducing service. The MS designated can be a group of MSs or a single MS. It gives MS the information of the zone location, the orthogonal pilot pattern and it also will provide the relative location information of the UL- Zone.
 - (5) IR-Zone (Interference Reducing Zone): this zone is activated by the BS it can be divided into UL and DL IR-zones. The zone's size and location are described in the FH and the SFM, it also serves those MSs that need interference reducing services.
 - (6) UL-IRR (Uplink-interference Reducing Request): the MS will send an interference reducing request in this frame and the BS will include this MS which sends this request in the IR-Zone in the next DL frame.


Proposed Text for SDD (2/4)

Control channel structure for TDD

Proposed Text for SDD (3/4)

Control channel structure for FDD

Proposed Text for SDD (4/4)

2) Interference Reducing Pilot Patterns

With properly designed pilot patterns that they have power interference weight between two any pairs of pilots we can have the system interference level lower than the system that has the same weight assigned for all pilots.

Reference(1/2)

- [1] Zexian Li, Andrea Bacioccola Nokia Shashikant Maheshwari, Adrian Boariu, Yousuf Saifullah, Xin Qi, Xiaoyi Wang Nokia Siemens Networks, "Proposed Text from IEEE C80216m-08/224r2 for Downlink Control Structure in P802.16m SDD" IEEE 802.16 Broadband Wireless Access Working Group, C80216m-08_017r1
- [2] Sophie Vrzic, Mo-Han Fong, Robert Novak, Jun Yuan, Dongsheng Yu, Sang-Youb Kim, Anna Tee, Kathiravetpillai Sivanesan, Nortel Networks, "Proposed SDD Text on Downlink Control Structure" IEEE 802.16
 Broadband Wireless Access Working Group, C80216mDL_ctrl-08_023
- [3] Kang Rui, Liu Ying, Guan Yanfeng, Lu ZhaohuaZTE Corporation," Proposed Text from IEEE C80216m-08/224r2 for Downlink Control Structure in P802.16m SDD "IEEE 802.16 Broadband Wireless Access Working Group, C80216mDL_ctrl-08_024
- [4] Fan Wang, Bishwarup Mondal, Mark Cudak, Amitava Ghosh, Tim Thomas, Fred Vook," Proposal on SDD Text on Downlink Control Structure" IEEE 802.16 Broadband Wireless Access Working Group, C80216mDL_ctrl-08_025

Reference(2/2)

- [5] Sun Changyin, Wangwenhuan, Liumin ZTE Corporation Yang Lian Huawei Technologies, "Proposed SDD Text of DL Control Structure based on IEEE C80216m-08/225r3" IEEE 802.16 Broadband Wireless Access Working Group, C80216m-08_027
- [6] Youngsoo Yuk, Heejeong Cho, Jeongki Kim, Kiseon Ryu Ronny (Yong-Ho) Kim LG Electronics, "Proposed Text for 16m SDD on Downlink Control Structure" IEEE 802.16 Broadband Wireless Access Working Group, C80216m-08 032r1