Enhanced HARQ Scheme with Signal Constellation Rearrangement

Document Number: S80216m-08_771r2

Date Submitted: 2008-07-15

Source:

Ryohei KIMURA* Voice: +81-50-3687-6584

Christian Wengerter** E-mail: kimura.ryohei@jp.panasonic.com, yoshii.isamu@jp.panasonic.com

Isamu YOSHII*

Katsuhiko HIRAMATSU*

* Matsushita Electric (Panasonic)

** Panasonic R&D Center Germany

Venue:

Session #56 Denver, US

Base Contribution:

IEEE C80216m-08_771r1

Purpose:

For discussion and adoption by IEEE 802.16m group

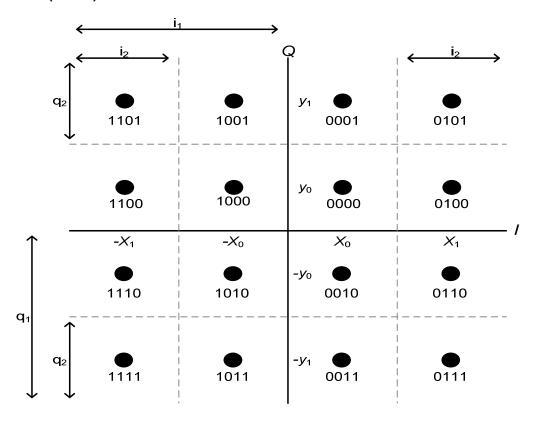
Notice:

This document does not represent the agreed views of the IEEE 802.16 Working Group or any of its subgroups. It represents only the views of the participants listed in the "Source(s)" field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein.

Release:

The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy:


The contributor is familiar with the IEEE-SA Patent Policy and Procedures:

http://standards.ieee.org/guides/opman/sect6.html#6.3>.

Further information is located at http://standards.ieee.org/board/pat-material.html and <a hre

Introduction

 Signal constellation with Gray mapping is used for Chase Combining (CC) in IEEE 802.16e

Signal constellation with Gray-mapping in 16 QAM

Symbol mapping : i₁i₂q₁q₂ i₁ and i₂ for In-phase channel q₁ and q₂ for Quadrature channel

i₁ and q₁ : Most Significant Bit(MSB)

- ones and zeros are mapped to half spaces (symmetry)
- Reliability is depends on the bit content of i_2 and q_2

i₂ and q₂: Least Significant Bit(LSB)

- ones and zeros are mapped to inner/outer rows /columns
- Reliability is independent from the bit content

For 16 QAM, the reliabilities of the bits Gray-mapped onto the modulated symbol vary from the MSBs i_1 and q_1 to the LSBs i_2 and q_2 .

Problem Statement and Solution

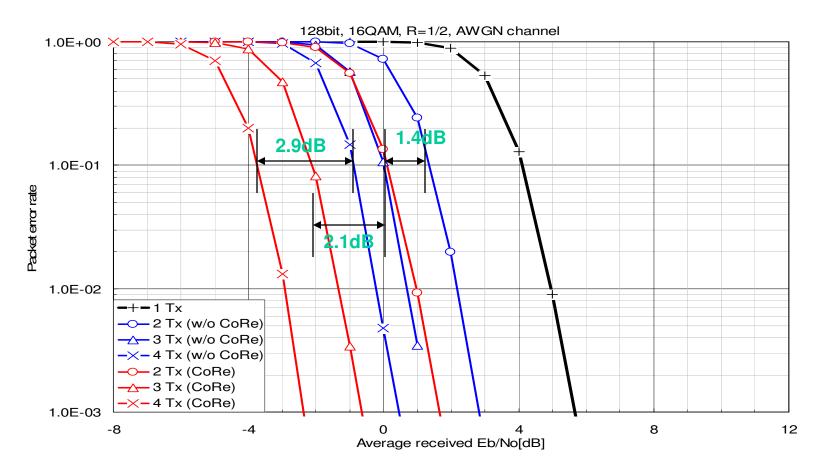
□ Problem Statement

- As the reliability variations between MSBs and LSBs increase, the error rate performance gets worse with respect to having equal bit reliabilities.
- Since the 16e CC scheme transmits (at least partially) identical symbols with identical signal constellation/mapping for all transmissions, the variations in bit reliabilities increase over retransmissions. This is particularly true when soft-combining the received packets by maximal ratio combining (MRC) at modulation symbol level or by adding LLRs at bit level.

□ Solution

• to average out the bit reliabilities over the retransmissions by signal Constellation Rearrangement (CoRe) for retransmissions.

CoRe Rule for 16 QAM

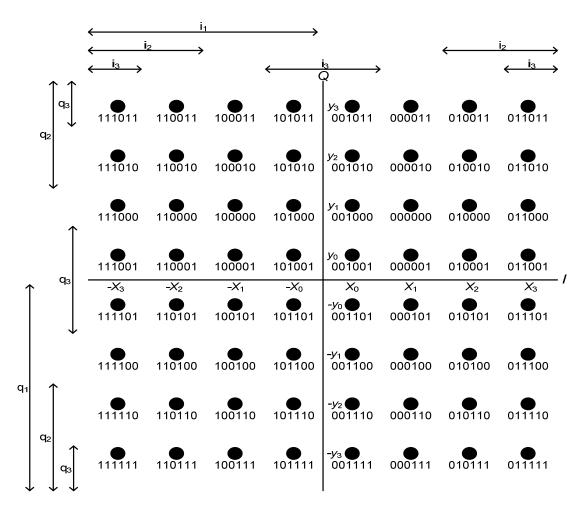

Transmissi on No.	Bit pattern	Explanation
1	$i_{\scriptscriptstyle 1}i_{\scriptscriptstyle 2}q_{\scriptscriptstyle 1}q_{\scriptscriptstyle 2}$	- None
2	$i_2ar{i}_1q_2\overline{q}_1$	- Swapping i_1 with i_2 and q_1 with q_2 /logical inversion of i_1 and q_1
3	$i_2 i_1 q_2 q_1$	- Swapping i_1 with i_2 and q_1 with q_2
4	$i_1ar{i}_2q_1\overline{q}_2$	- Logical inversion of i_2 and q_2
Further transmission		- Repeatedly using the signal constellations form 1st-4th transmissions

☐ Simple rearrangement rule based on reordering and inversion of the logical bit values

Simulation Setting

Parameter	Value
Carrier frequency	2.5 GHz
System bandwidth	10 MHz
FFT size	1024
Sub-carrier frequency spacing(f_s)	10.94 kHz
Useful symbol interval $(T_s=1/f_s)$	91.4 <i>μ</i> sec
Guard interval $(T_g = T_s/8)$	11.4 <i>µ</i> sec
Number of information bits for packet	128 bits (16 QAM) / 192 bits (64 QAM)
Antenna configuration	1-by-1
Channel coding	Turbo coding (original rate = 1/3)
MCS	16 QAM/64 QAM, R = 1/2
Channel model	AWGN
Channel estimation	Ideal
Maximum number of transmissions	4 (16 QAM) / 6 (64 QAM)

Performance Comparison for 16 QAM


☐ The gain is expected to be even larger for higher code rates

Conclusion

- ☐ The proposed CC with CoRe scheme shows a significant performance gain with respect to the 16e CC without CoRe.
- □ CoRe should be included in the 16m SDD.
- ☐ The proposed SDD text is as shown in C80216m-08_771r1.

Appendix: Signal Constellation Rearrangement for 64 QAM

Signal constellation with Gray-mapping in 64 QAM

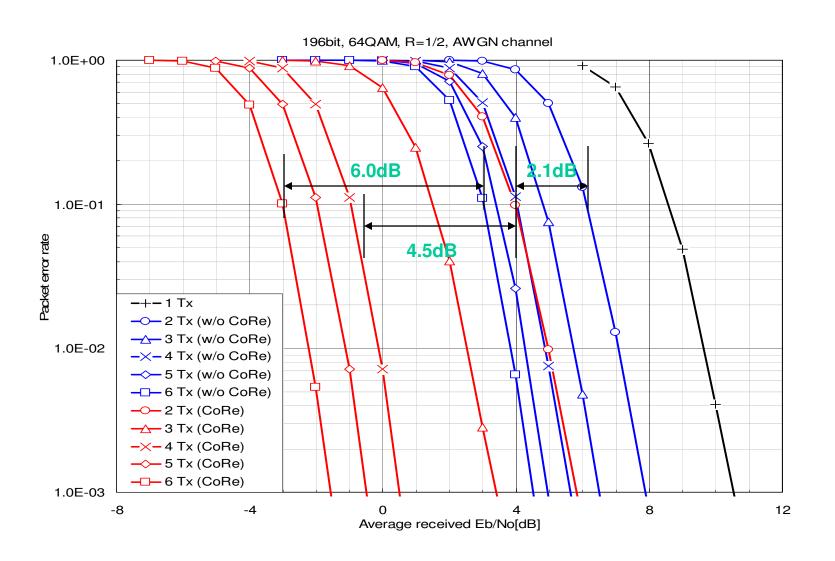
Symbol mapping : i₁i₂i₃q₁q₂q₃ i₁, i₂ and i₃ for In-phase channel q₁, q₂ and q₃ for Quadrature channel

i₁ and q₁ : High Reliability

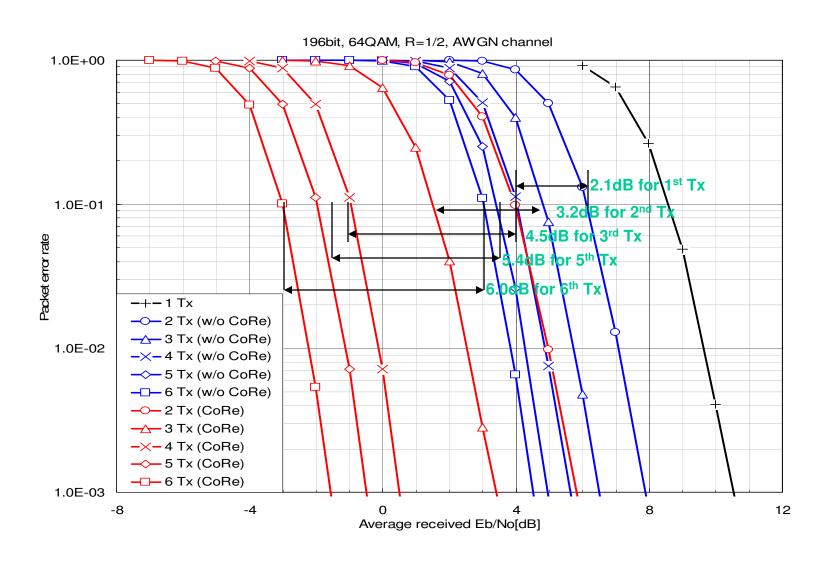
- ones and zeros are mapped to half spaces (symmetry)

i₂ and q₂: Medium Reliability

- ones and zeros are mapped to rows /columns 3-4-5-6(inner)/1-2-7-8(outer)


i₃ and q₃: Low Reliability

- ones and zeros are mapped to rows /columns 1-4-5-8/2-3-6-7


Rearrangement Rule for 64 QAM

Transmissio n No.	Bit pattern	Explanation
1	$i_1i_2i_3q_1q_2q_3$	- None
2	$i_2i_3i_1q_2q_3q_1$	- 1-bit circular shift for the in-phase and orthogonal components individually
3	$i_3i_1i_2q_3q_1q_2$	- 2-bits circular shift for the in-phase and orthogonal components individually
4	$i_1ar{i}_2ar{i}_3q_1ar{q}_2ar{q}_3$	- Logical inversion of $\emph{i}_{2},\emph{i}_{3}$, \emph{q}_{2} and \emph{q}_{3}
5	$i_2ar{i}_3ar{i}_1q_2ar{q}_3ar{q}_1$	- 1-bit circular shift for the in-phase and orthogonal components individually - Logical inversion of $i_1,\ i_3$, q_1 and q_3
6	$i_3ar{l}_1ar{l}_2q_3ar{q}_1ar{q}_2$	- 2-bits circular shift for the in-phase and orthogonal components individually - Logical inversion of $i_1,\ i_2$, q_1 and q_2
Further transmission		- Repeatedly using constellations form 1st-6th transmissions

Performance Comparison for 64 QAM

Performance Comparison for 64 QAM

