Evaluation of Differential Codebooks for IEEE 802.16m Amendment Working Document #### **IEEE 802.16 Presentation Submission Template (Rev. 9)** Document Number: IEEE S80216m-09 0790 Date Submitted: 2009-04-27 Source: Bruno Clerckx, David Mazzarese, Heewon Kang, Hokyu Choi Samsung Electronics bruno.clerckx@samsung.com d.mazzarese@samsung.com Venue: IEEE 802.16m Session#61, Cairo, Egypt Re: Category: AWD comments / Area: Chapter 15.3.7 (DL-MIMO) "Comments on AWD 15.3.7 DL-MIMO" Base Contribution: IEEE C80216m-09 0790 Purpose: Discussion and approval Notice: This document does not represent the agreed views of the IEEE 802.16 Working Group or any of its subgroups. It represents only the views of the participants listed in the "Source(s)" field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein. #### Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16. #### Patent Policy: The contributor is familiar with the IEEE-SA Patent Policy and Procedures: http://standards.ieee.org/guides/opman/sect6.html#6.3. Further information is located at http://standards.ieee.org/board/pat/pat-material.html and http://standards.ieee.org/board/pat/pat-material.html >. ## Background - This contribution presents the performance evaluation of differential codebooks - SDD supports a differential feedback mode for codebook based precoding in DL SU and MU-MIMO - In San Diego meeting, SDD supports "rotation based schemes". ### 2 kinds of rotation based schemes [C80216m-09_0058r4.doc] Rotation Scheme 1: right quantization • Differentiation at SS: $$\mathbf{D} = \mathbf{Q}^H(t-1)\mathbf{V}(t)$$ • Quantization at SS: $$\hat{\mathbf{D}} = \underset{\mathbf{D}_i \in C_d}{\arg \max} \left\| \mathbf{D}^H \mathbf{D}_i \right\|_F$$ Beamforming matrix reconstruction at BS: $$\hat{\mathbf{V}}(t) = \mathbf{Q}(t-1)\hat{\mathbf{D}}$$ • Beamforming at BS: $$\mathbf{y} = \mathbf{H} \, \hat{\mathbf{V}}(t) \mathbf{s} + \mathbf{n}$$ ## Our Proposal - Rotation Scheme 2: left quantization - Differentiation at SS: $\mathbf{D} = \mathbf{V}(t)\mathbf{Q}^H(t-1)$ - Quantization at SS: $\hat{\mathbf{D}} = \underset{\mathbf{D}_i \in C_d}{\arg \max} \left\| \mathbf{D}^H \mathbf{D}_i \right\|_F$ - Beamforming matrix reconstruction at BS: $$\hat{\mathbf{V}}(t) = \hat{\mathbf{D}}\mathbf{Q}(t-1) \qquad \mathbf{Q}(t-1) = \hat{\mathbf{V}}(t-1)$$ •Beamforming at BS: $$\mathbf{y} = \mathbf{H} \hat{\mathbf{V}}(t)\mathbf{s} + \mathbf{n}$$ ## Properties | | Rotation Scheme 1 | Rotation Scheme 2 | |---|---|---| | Design Principle | Quantize the right side combining weight space | Quantize a rotation matrix space | | Codeword size | Nt x Ns | Nt x Nt | | Adaptation to time and spatial correlation | no adaptation to time correlation, but adaptation to spatial correlation -> redundant with adaptive mode | Adaptation to time correlation (i.e. primary objective of a differential codebook) and spatial correlation through a single parameter p | | Codebook sizes | 3 and 4 bits | 4 bits | | # of codebooks | One codebook per rank and scenarios (spatially uncorrelated and correlated), i.e. 4 x 2 = 8 codebooks 3 and 4bits -> 16 codebooks how to select in practice the appropriate codebook for a given rank? | The same (=1) codebook for all ranks and scenarios Robust design for various spatial correlation | | CQI, PMI calculation and testing complexity | Higher | Lower | | Quantization | Nt x Ns space to quantize sensitivity to quantization error difficult to control and assess | Nt-dimensional unitary space Compactly packed rotation codebook | | Rank adaptation | Rank feedback is typically 20 ms. A typical r
ms. Hence no need to adapt the rank during | reset period for differential codebook is 20-30 the differential transmissions | | Design for 8x8 | Optimization for each rank | 1 optimization for all ranks | ## Complexity comparisons | Rotation Scheme 1 | Rotation Scheme 2 | | | | | |--|--|--|--|--|--| | • Searching complexity directly proportional to the codebook size and is implementation dependent • Quantization at MS: $\hat{\mathbf{D}} = \underset{\mathbf{D}_i \in C_d}{\operatorname{argmax}} \left\ \mathbf{D}^H \mathbf{D}_i \right\ _F$ | | | | | | | For 4bits, complexity is pretty much the same for ro | tation schemes 1 and 2 | | | | | | • Q(t-1) updated at each feedback period and subband based on complex operations (multiple Householder transformation, Gram-Schmidt orthogonalization and/or QR decomposition of $\hat{\mathbf{V}}(t-1)$) | • calculation of Q(t-1) is straightforward $\mathbf{Q}(t-1) = \hat{\mathbf{V}}(t-1)$ | | | | | | Q(t-1) update is rank dependent, therefore
requiring a different implementation of Q(t-1) for
each rank | same straightforward operation for all ranks | | | | | | no adaptation to time correlation | • possible adaptation to time correlation through parameter ρ and SVD | | | | | | | SVD only necessary if we change the codebook. A
predefined codebook can be stored otherwise. | | | | | | Large testing time required | Small testing time required | | | | | | Householder, Gram-Schmidt and QRmultiple codebooks (CB per rank and scenarios) | only one codebook | | | | | ## Quantization properties | Rotation Scheme 1: Nt x Ns space to quantize | Rotation Scheme 2: Nt-
dimensional unitary space | |--|--| | no equivalence relation of the codebook No distance measure related to system performance No guarantee that the CB does not overquantize the space | Proof of the equivalence relation which decreases the volume of the codebook space The base rotation codebook is in Riemannian manifold -> distance measure can be defined | | •The quantization error not only depends on the rank of \mathbf{D} but also on the quant. error induced in \mathbf{Q} • Quantization error in \mathbf{D} appears at 2 levels • Householder operation in \mathbf{Q} boosts and spreads the quantization error $\hat{\mathbf{V}}(t-1) = \hat{\mathbf{Q}}(t-2)\hat{\mathbf{D}}(t-1)$ over 4x4 space | •Rotation schemes 2 never have to quantize a full NtxNt matrix. The density/magnitude of off-diagonal elements of D codebook is much lower than diagonal elements | | Some ambiguity when applying transformation for generating Q (for columns from Nt-Ns to Nt) rank 3 and rank 4 transformation gives very weak performance | | | •sensitivity to quantization error difficult to control and assess | Compactly packed rotation codebook | ### Differential 4Tx codebooks | | rank | label | Codebook size | reference | |-------------------|------------------|--|-------------------------|--| | Rotation scheme 1 | Rank 1 | 'Rot1 Uncorr CB rank1' 'Rot1 Corr CB rank1' | 3 bit
3 bit | C80216m-09_0528.ppt (Qinghua Li et al.) | | | Rank 2 | 'Rot1 Uncorr CB rank2' 'Rot1 Corr CB rank2' | 3 bit
3 bit | C80216m-09_0927r2.ppt (Qinghua
Li et al.) | | | Rank 3 | 'Rot1 Uncorr CB rank3' 'Rot1 Corr CB rank3' | 3 bit
3 bit | | | | Rank 4 | 'Rot1 Uncorr CB rank4' 'Rot1 Corr CB rank4' | 3 bit
3 bit | | | | Rank 1 | 'Rot1 Uncorr CB rank1' 'Rot1 Corr CB rank1' | 4 bit
4 bit | | | | Rank 2 | 'Rot1 Uncorr CB rank2' 'Rot1 Corr CB rank2' | 4 bit
4 bit | | | | Rank 3 | 'Rot1 Uncorr CB rank3' 'Rot1 Corr CB rank3' 'Rot1 Uncorr CB rank3 NEW' | 4 bit
4 bit
4 bit | | | | Rank 4 | 'Rot1 Uncorr CB rank4' 'Rot1 Corr CB rank4' 'Rot1 Uncorr CB rank4 NEW' | 4 bit
4 bit
4 bit | | | Rotation scheme 2 | For all
Ranks | 'Rot2 1'
(p = 0.9, 0.95) | 4 bit | C80216m-09_0677.doc
(David Mazzarese et al.)
C80216m-09_0790.pdf (Bruno
Clerckx et al.) | | | For all
Ranks | 'Rot2 2' | 4 bit | C80216m-09_038r1_LGE_r1.doc
(WookBong Lee et al.) | Simulated codebooks ## Differential 8Tx codebooks | | rank | label | Codebook
size | reference | |-------------------|------------------|--------|------------------|---------------------| | Rotation scheme 2 | For all
Ranks | 'Rot2' | 4 bit | C80216m-09_0790.pdf | ## SU-MIMO performance | | Uncorrelated | |--|---| | Rot 1 {Uncorr CB for rank1 to 4} 3bits | moderate refinement in 4x2
Big Loss in 4x4 | | Rot 1 {Uncorr CB for rank1 to 4} 4bits | The best refinement in 4x2 Big Loss in 4x4 | | 'Rot2 1' 4bits (ρ = 0.9) | The best overall: excellent refinement in 4x2 and 4x4 | | 'Rot2 2' | Loss | | Adaptive mode | No gain for rank 1
Loss for rank>1 | ### **SU-MIMO Performance comparisons** | 4x2
SU- | SNR | 0dB | 5dB | 10dB | 15dB | 20dB | |---------------------------|--|-------|--------|---------|--------|--------| | MIMO
Uncor-
related | Gain of 'Rot 1' 4bit {Uncorr CB for rank1 to 2} over 4bit AWD standard mode | 1.99% | 6.87% | 10.73% | 6.84% | 0.00% | | | Gain of 'Rot2 1' 4bit (p =0.9) over 4bit AWD standard mode | 1.70% | 5.26% | 9.77% | 5.30% | 0.00% | | | Gain of 'Rot 1' 4bit {Uncorr CB for rank1 to 2} over 'Rot2 1' 4bit (p =0.9) | 0.29% | 1.53% | 0.88% | 1.46% | 0.00% | | 4x4
SU- | SNR | 0dB | 5dB | 10dB | 15dB | 20dB | | MIMO
Uncor-
related | Gain of 'Rot 1' 4bit {Uncorr CB for rank1 to 4} over 4bit AWD standard mode | 3.17% | -2.87% | -3.91% | -4.47% | -1.82% | | | Gain of 'Rot 1' 4bit {Uncorr CB for rank1 to 4} NEW rank 3 and 4 (C80216m-09_0927r2.ppt) over 4bit AWD standard mode | 2.41% | 4.25% | 8.95% | 3.78% | -0.85% | | | Gain of 'Rot2 1' 4bit (p =0.9) over 4bit AWD standard mode | 1.50% | 4.13% | 7.21% | 1.30% | -0.68% | | | Gain of 'Rot 1' 4bit {Uncorr CB for rank1 to 4} over 'Rot2 1' 4bit (p =0.9) | 1.64% | -6.72% | -10.37% | -5.69% | -1.15% | ^{*} Gain averaged over 30ms (i.e. reset period=30ms) ## MU-MIMO performance | | Uncorrelated | Correlated | |-------------------------------|---|--| | 'Rot1 Uncorr CB rank1' 3 bits | good refinement | No refinement | | 'Rot1 Corr CB
rank1' 3bits | Not robust enough | The best among diff. CB at high SNR (excellent refinement) | | 'Rot1 Uncorr CB rank1' 4 bits | The best refinement at high SNR (20 dB) | small refinement | | 'Rot2 1' 4bits | (ρ=0.95, ρ=0.9) excellent refinement at all SNRs Enables tracking of mobility (fct. of ρ) | (ρ=0.95) The best among diff. CB at low SNR. Very Robust. (ρ=0.9) small refinement | | 'Rot2 2' | Loss | Loss | | Adaptive mode | No gain | The best | ### **MU-MIMO Performance comparisons** | 4x2
MU- | SNR | 0dB | 5dB | 10dB | 15dB | 20dB | |-----------------|---|--------|--------|----------------|--------|----------------| | MIMO
Uncor- | Gain of 'Rot 1 Uncorr CB for rank1 ' 4bit over 4bit AWD standard mode | 17.69% | 16.65% | 17.99% | 17.35% | 25.47% | | related | Gain of 'Rot2 1' 4bit (p =0.95) over 4bit AWD standard mode | 18.82% | 16.07% | 17.30% | 19.67% | 21.83% | | | Gain of 'Rot2 1' 4bit (p =0.9) over 4bit AWD standard mode | 17.01% | 15.05% | 16.91% | 15.04% | 20.82% | | 4x2 | SNR | 0dB | 5dB | 10dB | 15dB | 20dB | | MU- | | | | | | | | MIMO
Correl- | Gain of 'Rot 1 Uncorr CB for rank1' 4bit over 4bit AWD standard mode | 2.17% | 3.20% | 3.12% | 3.71% | 1.67% | | МІМО | | 2.17% | 3.20% | 3.12%
7.39% | 3.71% | 1.67%
5.55% | | MIMO
Correl- | 4bit over 4bit AWD standard mode Gain of 'Rot 1 Corr CB for rank1' 3bit | | | | | | ^{*} Gain averaged over 30ms (i.e. reset period=30ms) ### Conclusions - Differential mode should mainly target spatially uncorrelated channels - Significantly outperforms the standard and adaptive modes in spatially uncorrelated channels - Is outperformed by the adaptive mode in spatially correlated channels - We propose to adopt 'Rot2 1' as the differential feedback mode for codebook based feedback - The best overall performance and robustness in 4x2 and 4x4 SU MIMO - Excellent performance in MU MIMO uncorrelated channels - Very robust in correlated channels - For the same codebook size, it has lower complexity compared to rotation schemes 1 - A single codebook for all scenarios and ranks (compared to 16 codebooks for rotation scheme 1) - Easily adaptable to various environment and mobile speed if necessary - Recommended value $\rho = 0.9$ # Appendix simulation results ## **CL SU MIMO** #### 4x2 CL SU MIMO: uncorrelated (4 λ,15°AS), 3km/h Absolute Goodput #### 4x2 CL SU MIMO: uncorrelated (4 λ, 15°AS), 3km/h Relative Goodput Gain [%] vs. standard mode Relative Goodput Gain [%] of 'Rot2 1' (ρ=0.9) 4bits over standard mode Relative Goodput Gain [%] of 'Rot 1' 4bit {Uncorr CB for rank1 to 2} over standard mode Slight performance gain for 'Rot1' 4bits over 'Rot2 1' 4bits # 4x4 CL SU MIMO: uncorrelated (4 λ, 15°AS), 3km/h Absolute Goodput #### 4x4 CL SU MIMO: uncorrelated (4 λ, 15°AS), 3km/h Relative Goodput Gain [%] vs. standard mode Relative Goodput Gain [%] of 'Rot2 1' (ρ=0.9) 4bits over standard mode Relative Goodput Gain [%] of 'Rot 1' 4bit {Uncorr CB for rank1 to 4} over standard mode 'Rot2 1' 4bits significantly outperforms 'Rot1' 4bits 'Rot1' 4bits is worse than the standard mode for SNR>=5dB #### 4x4 CL SU MIMO: uncorrelated (4 λ, 15°AS), 3km/h Relative Goodput Gain [%] vs. standard mode Relative Goodput Gain [%] of 'Rot2 1' (ρ=0.9) 4bits over standard mode Relative Goodput Gain [%] of 'Rot 1' 4bit {Uncorr CB for rank1 to 4' NEW over standard mode 'Rot2 1' 4bits significantly outperforms 'Rot1' 4bits 'Rot1' 4bits is worse than the standard mode for SNR>=5dB 8x2 SU MIMO: uncorrelated (4 λ, 15°AS), 3km/h Relative Goodput Gain [%] vs. standard mode ### Performance comparisons | 4x2
SU- | SNR | 0dB | 5dB | 10dB | 15dB | 20dB | |---------------------------|--|-------|--------|---------|--------|--------| | MIMO
Uncor-
related | Gain of 'Rot 1' 4bit {Uncorr CB for rank1 to 2} over 4bit AWD standard mode | 1.99% | 6.87% | 10.73% | 6.84% | 0.00% | | | Gain of 'Rot2 1' 4bit (p =0.9) over 4bit AWD standard mode | 1.70% | 5.26% | 9.77% | 5.30% | 0.00% | | | Gain of 'Rot 1' 4bit {Uncorr CB for rank1 to 2} over 'Rot2 1' 4bit (p =0.9) | 0.29% | 1.53% | 0.88% | 1.46% | 0.00% | | 4x4
SU- | SNR | 0dB | 5dB | 10dB | 15dB | 20dB | | MIMO
Uncor-
related | Gain of 'Rot 1' 4bit {Uncorr CB for rank1 to 4} over 4bit AWD standard mode | 3.17% | -2.87% | -3.91% | -4.47% | -1.82% | | | Gain of 'Rot 1' 4bit {Uncorr CB for rank1 to 4) NEW rank 3 and 4 (C80216m-09_0927r2.ppt) over 4bit AWD standard mode | 2.41% | 4.25% | 8.95% | 3.78% | -0.85% | | | Gain of 'Rot2 1' 4bit (p =0.9) over 4bit AWD standard mode | 1.50% | 4.13% | 7.21% | 1.30% | -0.68% | | | Gain of 'Rot 1' 4bit {Uncorr CB for rank1 to 4} over 'Rot2 1' 4bit (p =0.9) | 1.64% | -6.72% | -10.37% | -5.69% | -1.15% | ^{*} Gain averaged over 30ms (i.e. reset period=30ms) ### observations #### 4x2 MIMO - 4bits outperform 3bits - Good refinement for 'Rot2 1' and 'Rot1 Uncorr CB rank1' 4bits with a slight advantage for 'Rot1 Uncorr CB rank1' 4bits - 'Rot2 2' shows significant loss due to small distance on the Riemannian manifold | | Distance on Riemannian manifold | properties | |----------|---------------------------------|-----------------------------| | 'Rot2 1' | 0.9822 | Equally spaced codebook | | 'Rot2 2' | 0.0266 | Not equally spaced codebook | #### 4x4 MIMO - Good refinement for 'Rot2 1' - Significant loss for 'Rot1 Uncorr CB rank1' 3bits and 4bits #### **Overall** - Significant gain of differential codebooks in uncorrelated channels over the standard mode - 'Rot2 1' 4bits (0.9) shows the best performance overall ### **CL MU MIMO** # 4x2 MU MIMO: uncorrelated (4 λ, 15° AS), 3km/h Absolute Goodput #### 4x2 MU MIMO: uncorrelated (4 λ, 15° AS), 3km/h Rot 1 vs. Rot 2 - Relative Goodput Gain [%] of 'Rot2 1' (ρ=0.95 and ρ=0.9) 4bits over standard mode - Relative Goodput Gain [%] of 'Rot1 Uncorr CB rank1' 3 bits and 4bits over standard mode - Average gain between 20-30% - ρ =0.95 slightly outperforms ρ =0.9 - Average gain between 20-35% for 4bits - 4bits outperforms 3bits - 'Rot1 Uncorr CB rank1' 4 bit the best at 20dB #### Performance comparisons | 4x2
MU- | SNR | 0dB | 5dB | 10dB | 15dB | 20dB | |---------------|--|--------|--------|--------|--------|--------| | MIMO
Uncor | Gain of 'Rot 1 Uncorr CB for rank1' 4bit over 4bit AWD standard mode | 17.69% | 16.65% | 17.99% | 17.35% | 25.47% | | relate
d | Gain of 'Rot2 1' 4bit (p =0.95) over 4bit AWD standard mode | 18.82% | 16.07% | 17.30% | 19.67% | 21.83% | | | Gain of 'Rot2 1' 4bit (p =0.9) over 4bit AWD standard mode | 17.01% | 15.05% | 16.91% | 15.04% | 20.82% | Similar performance at realistic SNR 'Rot2 1' 4bit (**p**=0.9) slightly lower performance 'Rot 1 Uncorr CB for rank1' 4bit the best at very high SNR (20 dB) ^{*} Gain averaged over 30ms (i.e. reset period=30ms) # 4x2 MU MIMO: uncorrelated (4 λ, 15° AS), 3km/h Gain over standard and adaptive modes Relative Goodput Gain [%] of 'Rot2 1' (p=0.95) 4bits over standard mode Relative Goodput Gain [%] of 'Rot2 1' (ρ=0.95) 4bits over adaptive mode Significant gain (20-30%) over standard mode Significant gain (15-25%) over adaptive mode # 4x2 MU MIMO: uncorrelated (4 λ, 15° AS), 6km/h Adaptation to time correlation ### observations - Good refinement for 'Rot2 1' and 'Rot1 Uncorr CB rank1' 3 and 4bits - 4bits outperform 3bits - 'Rot1 Corr CB rank1' 3bits optimized for small spacing shows loss or weak refinement in uncorrelated channels - 'Rot2 2' shows significant loss due to small distance on the Riemannian manifold - 'Rot2 1' easily adapts to mobile speed (i.e. parameter p) - Overall - Significant gain of differential codebooks in uncorrelated channels over the standard and adaptive modes - 'Rot2 1' (0.95 and 0.9) and 'Rot1 Uncorr CB rank1' 4bits show the best performance with some additional performance gain for 'Rot1 Uncorr CB rank1' 4bits at high SNR (20dB) - 'Rot2 1' benefits from better flexibility # 4x2 MU MIMO: correlated (0.5 λ, 3° AS), 3km/h Absolute Goodput #### 4x2 MU MIMO: correlated (0.5 λ, 3° AS), 3km/h Rot 1 vs. Rot 2 - Relative Goodput Gain [%] of 'Rot2 1' (ρ=0.95 and ρ=0.9) 4bits over standard mode - Relative Goodput Gain [%] of 'Rot1 Corr CB rank1' 3 bit and 'Rot1 Unorr CB rank1' 4bits over standard mode - 3bits designed for spatial correlation outperforms 4bits designed for uncorrelated - 'Rot1 corr CB rank1' 3 bit the best at high SNR #### Performance comparisons | 4x2
MU-
MIMO
Correl
-ated | SNR | 0dB | 5dB | 10dB | 15dB | 20dB | |---------------------------------------|--|-------|-------|-------|--------|-------| | | Gain of 'Rot 1 Uncorr CB for rank1' 4bit over 4bit AWD standard mode | 2.17% | 3.20% | 3.12% | 3.71% | 1.67% | | | Gain of 'Rot 1 Corr CB for rank1' 3bit over 4bit AWD standard mode | 2.36% | 4.74% | 7.39% | 10.21% | 5.55% | | | Gain of 'Rot2 1' 4bit (p =0.95) over 4bit AWD standard mode | 5.29% | 7.10% | 6.63% | 8.10% | 3.94% | | | Gain of 'Rot2 1' 4bit (p =0.9) over 4bit AWD standard mode | 4.41% | 3.21% | 2.04% | 4.54% | 1.42% | 'Rot2 1' 4bit (ρ =0.95) the best at low SNR 'Rot 1 Uncorr CB for rank1' 3bit the best at high SNR ^{*} Gain averaged over 30ms (i.e. reset period=30ms) # 4x2 MU MIMO: correlated (0.5 λ, 3° AS), 3km/h differential vs. adaptive mode # 4x2 MU MIMO: correlated (0.5 λ, 3° AS), 3km/h Gain over standard and adaptive modes Relative Goodput Gain [%] of 'Rot1 Corr CB rank1' 3bits over Gain much lower than in uncorrelated scenarios 40 time [ms] 50 60 70 20 30 Relative Goodput Gain [%] adaptive mode over 'Rot 1 Corr Significantly outperformed by the adaptive mode ### observations - Differential codebook less beneficial in correlated channels than in uncorrelated channels - Good refinement for 'Rot1 Corr CB rank1' 3bits - Good Robustness and refinement for 'Rot2 1' (0.95) 4bits - 'Rot2 1' (0.9) and 'Rot1 Uncorr CB rank1' 4bits show some small refinement - 'Rot1 Uncorr CB rank1' 3bits shows no throughput improvement compared to base codebook - Overall: - Moderate gain (smaller than in uncorrelated) of differential codebooks in correlated channels over the standard mode - Adaptive mode outperforms the differential mode in correlated channels - 'Rot1 Corr CB rank1' 3bits shows the best performance at high SNR - 'Rot2 1' (0.95) 4bits shows the best performance at low SNR ## Simulation Assumptions - Channel model: Pedestrian B channel model, 3km/h, linear array - Uncorrelated: AS= 15, d/λ =4 - Correlated: AS= 3, $d/\lambda=0.5$ - 10 MHz - HARQ (Chase Combining, non-adaptive) with 3 retransmissions - Delay first transmission: 8 subframes - Delay between re-transmissions: 1 frame (8 subframes) - CQI, PMI feedback period: every frame (5 ms) - Link Adaptation (PHY abstraction): QPSK 1/2 with repetition 1/2/4/6, QPSK 3/4, 16QAM 1/2, 16QAM 3/4, 64QAM 1/2, 64QAM 2/3, 64QAM 3/4, 64QAM 5/6 - Ideal channel estimation - MMSE receiver, MMSE CQI and PMI selection - No CQI transmission errors - ZFBF and SCW CL SU MIMO with rank adaptation - LLRU (4 PRUs) - Base codebook: 4bit subset AWD C80216m-09 0513r2.doc - Ideal antenna calibration - No constraint on PAPR - adaptive mode: correlation matrix feedback every 100ms and unquantized ## Text proposal Refer to IEEE C80216m-09_0790