

RPRSG Summary

Mike Takefman Chair RPRSG

RPRWG Preliminary Meeting January 16/17, 2001

Jan 16/17, 2001

IEEE 802.17 RPRWG

Mike Takefman

- RPRSG was created based on interest generated at a tutorial at the March 2000 IEEE 802 Plenary Meeting
- Cisco's Spatial Reuse Protocol was presented as an example of a new ring protocol that solved a particular problem "better" than SONET or Ethernet
 - Sprint, Sun Microsystems, Connexant and Pentacom presented in support

RPRSG Goals & Status

- Creation of a Project Authorization Request (PAR) and 5 Criteria document
- Gain Approval of IEEE 802 Working Groups & Executive Committee members for creation of a new Working Group
- Result was unanimous approval by SEC for creation of 802.17 Resilient Packet Ring WG
 - lots of hard work by many people to achieve this goal

5 Criteria

- Broad Market Potential
 - many companies working in this area
 - we could all be wrong :)
 - RHK views MAN market growing to \$13B by 2004
- Compatibility with 802 Architecture (802.1D/f/Q)
 - RPRSG members researched requirements and determined no impediments exist
 - Jumbo frame support a minefield that we will have to make decisions on and navigate

5 Criteria (cont)

- Distinct Identity
 - Objections from some members of 802.1 and 802.3
 - could the same job be done with Ethernet Switches and simple extensions to existing protocols
 - we discussed the issue with 802.1 and provided 802.3 with a response to why the statement above was untrue
 - Concern from 802.3 about confusion in the marketplace caused by re-use of Ethernet PHYs
 - incomplete explanation of RPR use of Ethernet PHY versus RPR is a variant of Ethernet (it is not!)
 - Ethernet in the MAN is a competing technology
 - SONET in the MAN is a competing technology

5 Criteria (cont)

- Technical Feasibility
- Economic Feasibility
 - solutions shipping today
 - many companies hard at work on new systems

What is an RPR

- The following slides are my take on what kind of consensus was achieved during the 4 RPRSG meetings
 - I may have some of it WRONG
 - I left out stuff that is/was controversial so it is not intended to be complete or exhaustive
 - this is a level set
- These slides are not binding on the RPRWG
 - but ... the end result of our work must fit into our approved
 PAR and 5 Criteria

Why are RPRs needed

- SONET does not cut it
 - good resiliency features but
 - static bandwidth allocations are inefficient for data packet transfer
 - higher cost solution
 - dedicated protection bandwidth is wasteful
 - extra equipment to purchase
 - provisioning of service (OAM) is "slow"

- Ethernet does not cut it
 - spanning tree does not allow a ring topology
 - since the majority of fiber in metropolitan areas are in rings some packets must take the long path
 - spanning tree reconvergence is slow
 - rapid reconvergent spanning tree may improve situation
 - no bandwidth allocation for nodes on the ring
 - performance of the ring is dependant on design of the switch

RPR Features

- Dual Counter Rotating Rings
 - no reserved protection BW
 - both rings carry traffic all of the time
- Media Independence
 - scalable in bit-rate, # nodes, span distance
 - no agreement on the range of values
 - OC-48c & OC-192c SONET/SDH
 - 1Gb/s & 10 Gb/s Ethernet
- Plug and Play
 - easy to install and maintain

RPR Features

- Destination Stripping of variable length uni-cast packets
 - spatial re-use increases BW efficiency of ring
- Variable length broadcast and multi-cast packets
 - MAC layer provides replication function for drop and continue operation
- Mechanism to insure packets do not circulate forever in the event of node loss
- Topology Discovery Mechanism

- Distributed Bandwidth Management & Congestion Control
 - many proposals for mechanisms
- Protection Mechanism
 - achieve sub 50 ms. Protection
 - proposals for both wrapping versus "steering"
- Class Of Service capability
 - multiple priorities for traffic on the ring and queued for transmission
- Support of large MTU (9216 Bytes) is being investigated

Bridging vs. Routing

- IEEE 802 requires that any 802 standard implement 802.1D bridging and & 802.1Q VLANs
- Members of RPRSG expect to see both bridging and routing used in networks deploying the 802.17 standard
- A working relationship with IETF IPoPTR will provide input to the WG to insure that requirements for routed systems will be taken into account

RPR MAC Model

SndPkt(pkt,COS,direction) RcvPkt(pkt,COS,direction) ProtectionState(cmd,state) **MAC Services Interface RPR** MAC MAC SndPkt(pkt) SndPkt(pkt) RcvPkt(pkt) RcvPkt(pkt) LinkState(state) LinkState(state)

Determine packet direction (addr, protection state) Queue packet based on COS Fairness Algorithm Protection Mechanism Topology Discovery

CRC Gen/Chk Address Recognition /pkt fwd