

RPR Bandwidth Management and

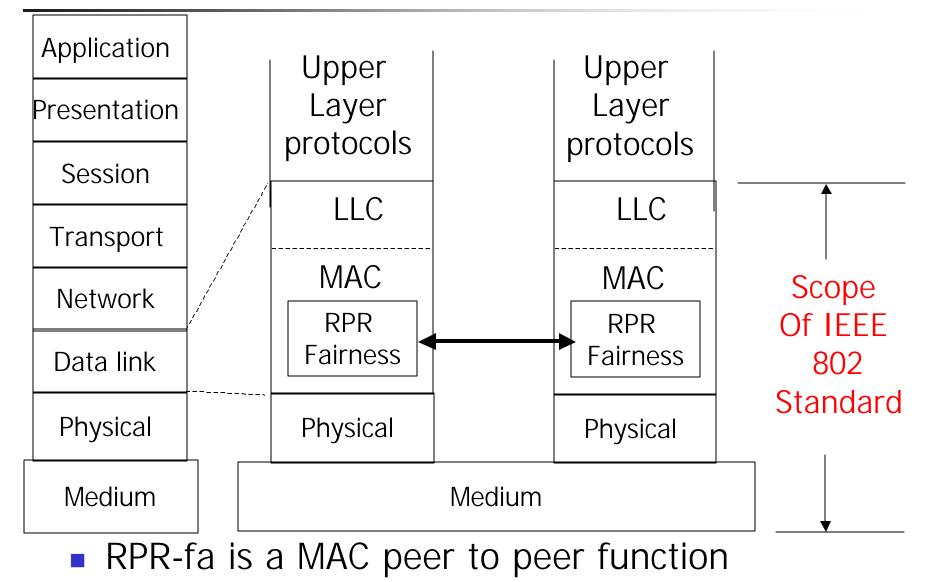
Fairness

Necdet Uzun

Harry Peng

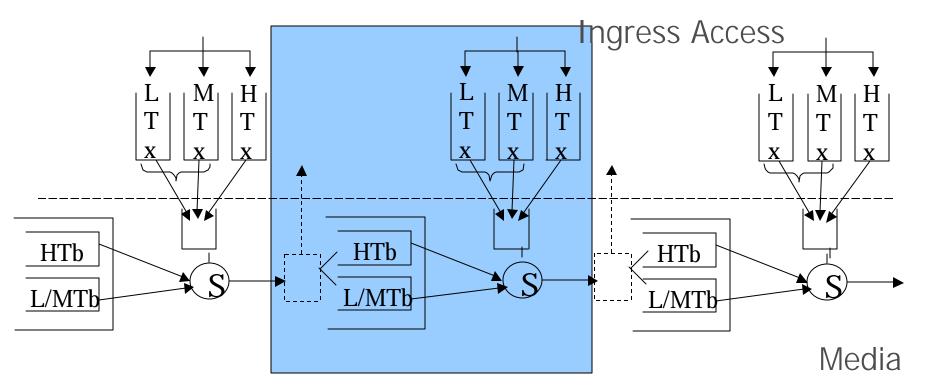
- Requirements
- Node model
- Fairness Algorithm
 - Weighted
 - BW reservation
 - 3 Priority Support
 - VDQ Support
- Fairness Message Handling
- Conclusions

Requirements

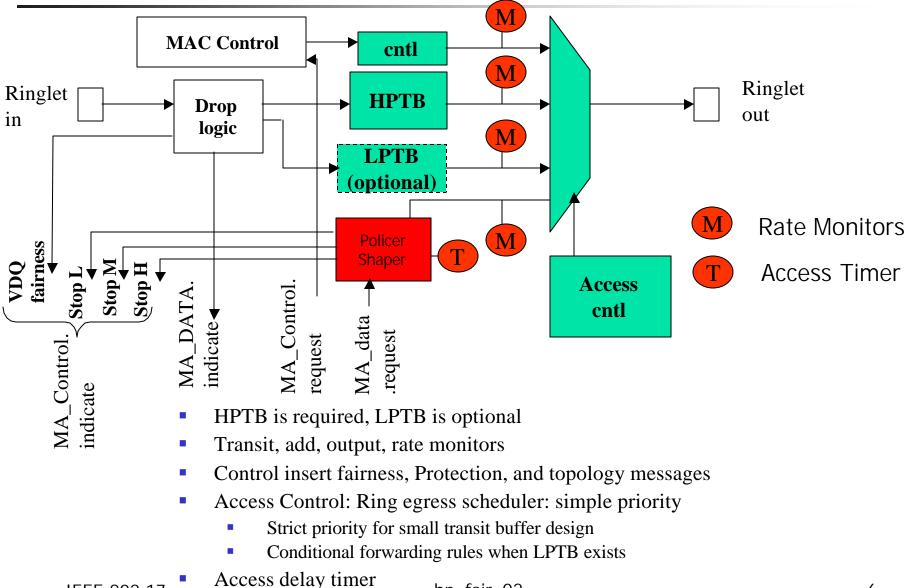


- Target MAN application (LAN/MAN/RAN/WAN)
 - Ring size: MAN: circumference < 1000km, stations<128</p>
 - SLA: BW, delay, loss, jitter
- Shared Media Access
 - Unlike 802.3 CSMA/CD where collision is detected by all stations on the wire
 - Spatial Reuse
- Three priority support
- HP bandwidth reservation
- Weighted Fairness
 - Each node has an assigned weight
 - Advertise fair_rate value scaled by weight

Reference Model



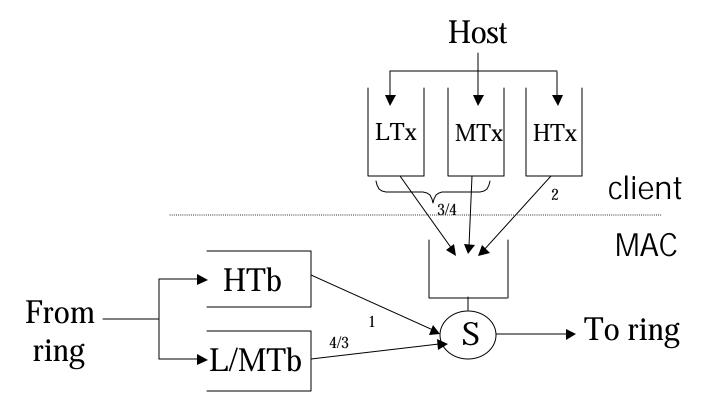
IEEE 802.17

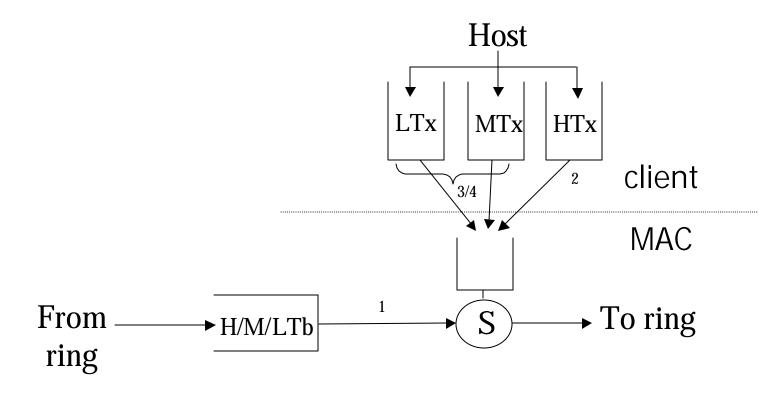


- MAC peer to peer function
- Transit path is an extension of the physical medium
- Stations are connected in series
 - Ingress and transit
- Fairness Messages

IEEE 802.17

Fairness: Implementation Model


IEEE 802.17


- Two transit buffers
- Three transmit buffers
 - 3 token bucket counter for HP, cMP, eMP+LP

- Single transit buffer
- Three transmit buffers
 - 3 token bucket counter for HP, cMP, eMP+LP

- 3 Entities/state machines
 - 1. Congestion Machine: detects when fa is required
 - 2. Rate Advertisement machine: generate and advertised rate
 - 3. Rate Conformance machine: apply advertised message to ingress
- Station in congested point controls (advertises) a rate for the upstream nodes to conform to once it enters congestion
 - entering and exiting congestion could have hysterisis
 - one set of knobs to control entry and exit of congestion
- a station is in "congestion" determines a rate which is advertised
 - the rate needs to be modified as the node moves around the congestion zone
 - possibilities are: up or down or hold
- upstream nodes need to respond to the fa messages
 - always follow the rate the station receives unless
 - when a NULL message is received (go to full rate) the ramp up rate is configurable

IEEE 802.17

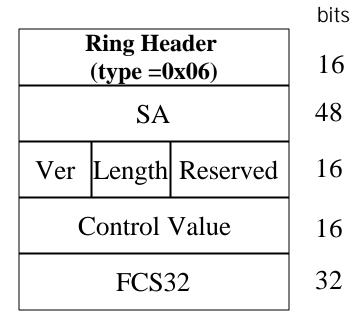
- Provide 3 priority classes on the ring
- High Priority
 - Guaranteed bandwidth (provisioned)
 - Bounded delay and bounded jitter
- Medium Priority
 - Committed Access Rate (CAR) for MP (cMP)
 - MP Traffic exceeding CAR (eMP) is subject to fairness algorithm control in the transmit path
 - Committed bandwidth (provisioned), best effort for excess traffic
 - Bounded delay and (loosely) bounded jitter
- Low Priority
 - No guarantees
 - Best effort for bandwidth, delay and jitter

Bandwidth Reservation:

- Optionally a certain amount of bandwidth on each span can be reserved
 - For use of HP or guaranteed traffic
 - This bandwidth can not be reclaimed by fairness algorithm (it is wasted if not used)
- Reserving bandwidth on a span is simple
 - Imit forward rate + add rate of MP+LP to

C - Σ r_i

Virtual Destination Queues


- Supported to provide certain network applications
- Multiple node congestion information for Virtual Destination Queuing (VDQ)
 - Use of more detailed choke (congested) point information in the client provides better utilization of network resources
 - A scheduling policy in the client may utilize multi-choke information
- Choke point and corresponding fair_rate information is passed to MAC client and MAC client does the scheduling of VDQ's.
 - Upon reception of fair_rate info, client updates allow_rate info for the appropriate choke point.
 - Client can keep up to N number of choke points.
 - Clients limit the amount of insertion traffic sent through each choke points to appropriate allow_rate

Message Format

- ⁵ Header as in standard frame
 - TTL, TYPE, RI, PRI, IOP
 - Fairness Control Header
 - Version = 3 bits.
 - Length= 8bits.
 - •Optional not all nodes have to support it
 - •Topology will be used synchronize version defaults to the lowest

RESERVED = 4 bits

- Control Value provides the rate information for the fairness algorithm
- Packet integrity FCS protected
- Optimized for MAC peer to peer messaging
 - Reduces control BW requirement

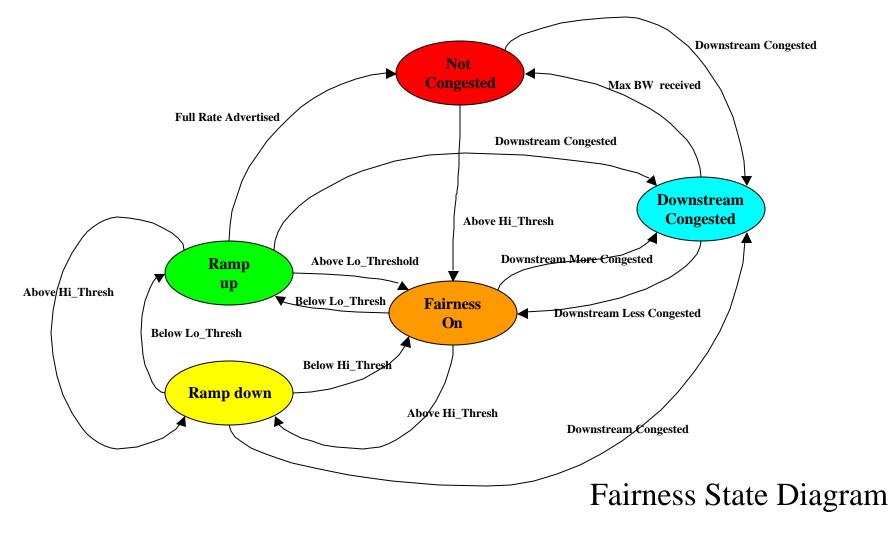
- Type 1 fairness messages are generated in every fairness message interval and passed hop by hop
 - Type 1 fairness messages can not cross fairness domain boundaries (isolation of congestion/fairness domains)
 - Fair_rate is processed by each MAC and passed to VDQ MAC client
 - A new fair_rate is determined by intermediate MAC and either originators SA or the current node's SA is used depending on whichever is more congested is sent to upstream
- Type 2 messages are generated by each MAC in every N=10 fairness message intervals and may be broadcast hop by hop
 - Fair_rate is passed to each MAC client along the way and stripped by the source
 - Used by VDQ Clients only

- RPR-fa fairness algorithm is simple
 - No per source information is needed in fair rate calculation
- RPR-fa algorithm works with both single and dual transit buffers
- RPR-fa supports up to 3 Transport Priority classes and
- RPR-fa supports weighted fairness algorithms
- RPR-fa supports efficient VDQ implementations
 - RPR-fa polices traffic based on most congested fairness domain that
 - No per destination policing is needed

Backup

Motivation:

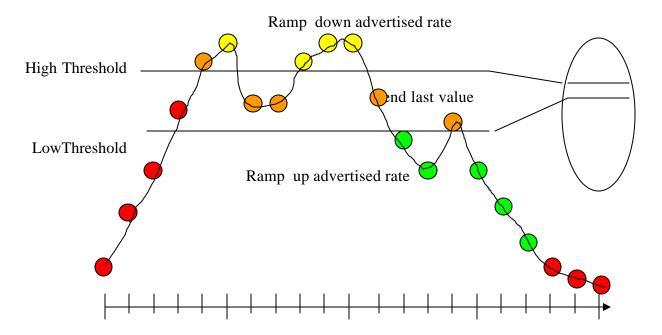
- 50,000 ft view is that the control of the congestion domain can be done with a basic algorithm with a few knobs. Complements requirements in many applications.
 - 2 sets of controls at the congestion point
 - 1 set of controls at the upstream nodes
- allows different behaviors to be configured and the algorithm adjusted to things like rings size, number of nodes, applications, performance.
- has more degrees of control than Gandalf or Aladdin



Three state machines per MAC ringlet

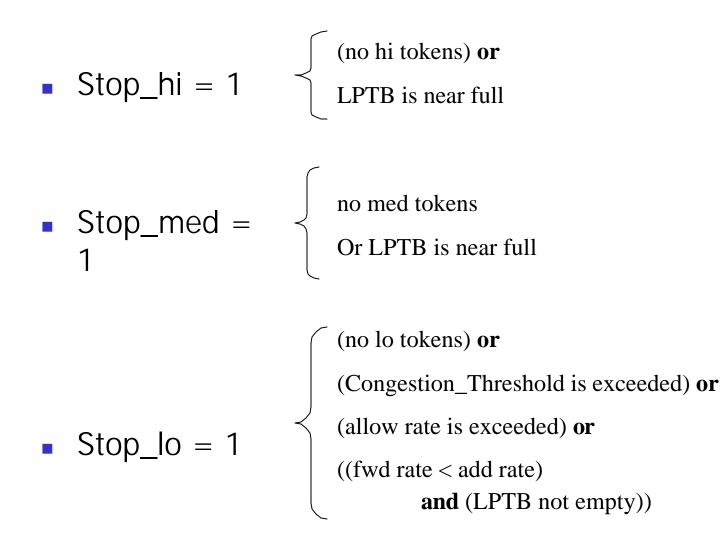
- Congestion machine determine whether ringlet is congested and how to adjust the advertised rate
 - HI_THRESH is the threshold that marks the entry into congestions, it is not the same as the LPTB HI_THRESHOLD.
 - LO_THRESH is the threshold that marks the exit of congestion, and may be the same value as HI_THRESH (no hysteresis) or smaller
- Rate Advertisement machine adjust the advertised rate
- Rate Conformance machine determine what rate we are allowed to transmit when receiving upstream fairness messages

Congestion Machine



• This chart shows the use of hysteresis in a single TB node

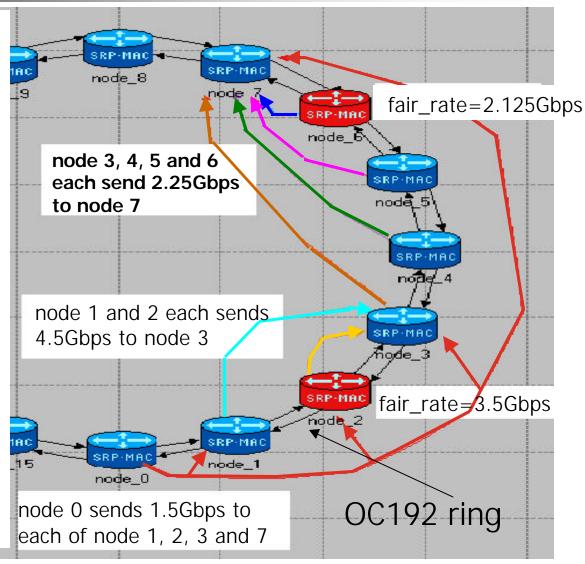
- Utilization measured and compares with threshold
- Two thresholds provide hysteresis for stability
 - Utilization crosses high threshold ramp down advertised rate to decrease upstream station usage
 - Utilization crosses low threshold ramp up advertised rate to increase upstream station usage



•Initial Advertised Value

- advertised_rate[t] = ((J-1)*advertised_rate[t-1] + add_rate) / J;
- optional case: (Max_Lrate -HP_Reserved) / Ns;
 - where Ns is the number of nodes sending
- Ramp Up value
 - advertised_rate[t] = advertised_rate[t-1] * (1+ (K-1)/L)
- •Ramp Down value
 - advertised_rate[t] = advertised_rate[t-1] * (1–(K-1)/L) + Filter_Fn()
 - Filter_Fn = (add_rate advertised_rate[t-1]) * (I-1)/J

Multiple Congestion Domains



Node 3 to 6 are in the 1st congestion domain

Node 0 to 2 are in the second congestion domains

Type 1 fairness messages from domain 1 should not be propagated to domain 2 by node 3 (fairness domain isolation)

As node 0 to node 7 traffic increases to 2Gbps, 2 fairness domains collapse

IEEE 802.17

- Node 0 (if VDQ) is aware of 3 congestion domains:
 - 3nd fairness domain: node 0, node 1 and node 2
 - 2st fairness domain : nodes between node 3 and node 6 (inclusive)
 - 1st fairness domain: nodes beyond node 6
- Node 0 (if simple client) is aware of 2 congestion domains:
 - Before congestion domains collapse:
 - 2nd fairness domain: node 0, node 1 and node 2
 - 1st fairness domain: nodes beyond node 3
 - After congestion domains collapse:
 - 2nd fairness domain: node 0 to node 6 (inclusive)
 - 1st fairness domain: nodes beyond node 6

- Node 0 (if VDQ) is aware of 3 congestion domains:
 - 3nd fairness domain: node 0, node 1 and node 2
 - 2st fairness domain : nodes between node 3 and node 6 (inclusive)
 - 1st fairness domain: nodes beyond node 6
- Node 0 (if simple client) is aware of 2 congestion domains:
 - Before congestion domains collapse:
 - 2nd fairness domain: node 0, node 1 and node 2
 - 1st fairness domain: nodes beyond node 3
 - After congestion domains collapse:
 - 2nd fairness domain: node 0 to node 6 (inclusive)
 - 1st fairness domain: nodes beyond node 6

- Node 0 should obey the following constraints while scheduling its virtual destination queues:
 - Up to line rate for traffic destined to node 1 and node 2.
 - Virtual destination queues for nodes 3,4,5, and 6 can be scheduled as long as the total usage beyond VDQ₂ does not exceed fair_rate₂.
 - Virtual destination queues for nodes beyond 6 can be scheduled as long as the total usage beyond VDQ₂ does not exceed fair_rate₂ and the total usage beyond VDQ₆ does not exceed fair_rate₆.