

802.17 Bridging

Robert Castellano
David James
Bob Sultan
Spencer Dawkins

Outline

- Bridging Requirements
- Simple Bridging
- Bridging with Destination Stripping
- Reference Models
- Common Frame Format / TX/RX Procedures
- Interoperability Examples
- Flooding Issues
- Why DSID/SSID is important to 802.17
- Recommendations
- References

Bridging Requirements

• 5 Criteria

- 802 Overview and Architecture
- Compatible with relevant portions of 802.1D, 802.1Q, and 802.1F
- Allow for simple mapping between 802.3 frames and RPR frames and vice versa.

• Spatial Reuse of Unicast Traffic

 Motion 7 Pass 89/1/4 - Requirement: The MAC shall support destination removal for uni-cast packets during normal operation.

Simple Bridging

Unicast Frame Transmitted from C1 to C2 All frames flooded to every station on the ring.

SID Proposal Bridging w/Destination Stripping

Unicast Frame Transmitted from C1 to C2 Frame directed to intended destination

Frames Stripped at Station 3 based on Station ID

SID Proposal implications on 802.17 end station

Unicast Frame Transmitted from C1 to C2 Frame Stripped at Station 3 based on destination MAC address

Spatial Reuse

802.17 MAC in 802.1D Bridge Architectural Model

1. Sublayer above the MAC providing certain services specific to the ring. Concept similar to 802.3ad.

Transparent Bridging w/ Simple Bridge

Transparent Bridging w/ DSID SSID Stripping

Comparison of Darwin Routed vs. Bridged PDUs for spatial reuse

Routed PDU with Spatial Reuse

Encapsulated Bridged PDU with spatial reuse

Low overhead Common Frame Format

802.17 End Stations can still strip frames based on their MAC Address

DSID value of FF indicates a broadcast frame SSID value of FF indicates Null DSID/SSID

Common frame format provides interoperability between end stations (routers) and bridges on an 802.17 ring.

Common Frame Procedures

• Destination Stripping type Bridges

Transmission

- Encapsulate a frame DSID based on the MAC_DA for all frames being transmitted onto the ring. Frame transmitted onto single ringlet.
- DSID set to B_cast address for all broadcast/multicast/unknown traffic.
 Frame transmitted onto both ringlets.
- SSID set to the transmitting station's station address
- Perform DSID aging

Reception

- Copy/Strip frame if DSID matches station address
- Copy frame of all other receive/transit frames to MAC relay for learning and forwarding
- Learn all DSID in mapping table.

Common Frame Procedures

Simple type Bridges

Transmission

- DSID set to B_cast address for all traffic.
- SSID set to the transmitting station's station address
- Frame transmitted onto both ringlets

Reception

- Copy/Strip frame if DSID matches station address
- Copy all other receive/transit frames to MAC relay for learning and forwarding

Common Frame Procedures

• 802.17 End Stations

Transmission

- DSID set to B_cast address for all traffic.
- SSID set to the transmitting station's station address
- Frame transmitted onto both ringlets

Reception

- Copy/Strip frame if DSID or MAC destination address matches station address
- Copy frame if broadcast/multicast

Interoperability Simple Bridge / DSID Stripping Bridge

C1 to C2 – Spatial Reuse (DSID)

C2 to C1 – Frame Flooded

Interoperability End Station / DSID Stripping Bridge

C1 to C2 – Spatial Reuse (DSID)

C2 to C1 – Frame Flooded

C1 to C3 – Spatial Reuse (MAC DA)

Interoperability End Station / Simple Bridge

C1 to C2 – Frame Flooded

C2 to C1 – Frame Flooded

C2 to C3 – Spatial Reuse

Bridging Correctness Requirements

- 802.17 Operation needs to be robust to station adds/moves/changes
 - Needs to be robust to sub ms reconfigurations
 - 802.17 operation shall not broken by reconfigurations and cross connects made at the optical level (ie. optical cross connects and optical switches).
 - 802.17 operation shall not result in frame duplication. (802.1D section 6.3.4, "MAC service does not permit duplication of frames").
 - 802.17 operation shall not result in traffic loss exceeding 50ms during network reconfiguration

TTL Stripping needs careful attention Bridging correctness affected by topology changes

- Adding a station(s) results in traffic loss until new topology converges
- Removing a station(s) results in multiple copies being received until new topology converges

Flooding / TTL Stripping Coherency Affected by Topology Changes

Maintaining Coherency during Topology Changes Possible Solutions

- Topology Discovery and Station Initialization Procedures
 - Stations must recognize and manage neighbor changes
 - Adds complexity to topology algorithm and initialization procedures
- Selective source station ID filtering (Bridges)
 - Filtering done based on station ID. Does not rely on TTL stripping
 - Station keeps track of transmissions received on both ringlets
 - If station ID x is received on ringlet 0, then it filters traffic received from station ID x on ringlet 1 and vice versa
 - Each station maintains a 50ms timer to allow traffic to be received on the other ringlet due to protection switch
 - TTL can be set to MAX_TTL

SSID Filtering Addresses Bridging Correctness

Why DSID/SSID Important to 802.17?

- SID Proposal Spatial Reuse for Bridged Networks
- SID Proposal Common low overhead (2 octet) frame format for Bridges/Routers
- SID Proposal Addresses bridging correctness requirements
- **Darwin** Routed networks have a distinct spatial reuse advantage over bridged networks.
- Darwin Special frame format (Encapsulation PDU) required for 802.17 bridging adds 14 more octets overhead than routed PDU to gain spatial reuse.
- Darwin Encapsulation PDU poses interoperability problems between 802.17 routers and other 802 end stations connected through 802.17 bridges. Encapsulation PDU should not be required to transmit across a single LAN. Does not preserve MAC service defintion, [802.1D, 6.2a]

Darwin puts bridged 802.17 networks at a disadvantage to routed networks.

SID Frame overcomes these deficiencies!!

Conclusions

- Common Frame Format forward compatible with Destination Stripping
 - Supports Simple Bridging for compatibility with 802.1D/Q bridging
 - Meets the 5 Criteria / 802.17 Technical Motion Requirements for spatial reuse
 - Supports Interworking Simple / Destination Stripping Bridges / Routers / End Stations
 - Reduces transparent bridging overhead by 12 bytes vs. full 14byte encapsulation header
 - Encapsulation bridging frame format can be supported for network scaleability
 - Minimal impact to routers/clients directly attached to ring
- Topology discovery algorithm performs unique station ID assignment
 - Station ID assignment can be done manually or via topology discovery

Recommendations to 802.17 WG

- Incorporate DSID/SSID into 802.17 frame format to support simple bridging and provide forward compatibility with destination stripping bridging
- Define Station ID Assignment Algorithm used by all 802.17 type stations
- Define a robust method addressing the flooding / stripping issues.

Draft Proposal - 802.17 Bridging, Castellano, rc_brdgdraft_01, January 2002

References

- 802.17 Bridging, rc_brdgdraft_01, January 2002
- 802.17 Bridging, R. Castellano et.al, rc_bridge, November 2001
- 802.17 MAC Compatibility with 802.1D/Q, M. Holness et. al., mh_brcom, November 2001
- Draft Proposal for Resilient packet ring access method & physical layer specifications, David James editor, dvj_RprDraft, November 2001
- Encapsulation Bridging and 802.17, R. Castellano, rc_ebridge, September 2001
- RPR Bridging Compliance, M. Holness, September 2001
- ANSI/IEEE 802.1D 1998 edition [ISO/IEC 15802-3: 1998]

Thank You!