

Rate Control in RPR – Lessons Learned from Java Simulations

Stein Gjessing Simula Research Laboratory

January 16. 2002

802-17-01-00174, sg_java_01.pdf

Contents

- Granularity of rate control – Fine grained vs bursty
- 1. Simple version
- 2. Multiple (N) VOQs / choke points version
 when N+1 is the number of stations

Bursty rate control

- Gandalf today:
 - OK to send if (myUsage < allowUsage)</pre>
 - myUsage is increased when packet sent
- Result, e.g.:

100 microsec intervals:

Fine grained rate control

- My new Java code:
 - Send at all packets at allowUsage / maxRate rate
- Result:

Experiment – new upstream flow

When the flow from 2 starts, it will congest station 4. Station 4 sends upstream congestion notification to station 2.

January 16. 2002

802-17-01-00174, sg_java_01.pdf

simula . research laboratory] Simulation results

- Sequence of packets passing station 5
 - 500 bytes packets
- Number of packets received per unit time (100 microsec) at stations 6 and 8

Packets passing station 5 – bursty rate control

MS-DOS-ledetekst	_ 8 ×
1⁄4 9 x 15 💽 🛄 🛍 🛃 🛃 🖪 🗛	
	: :
	: :
24000000 time units passed	
C:\rpr\jan02\progs\	

: packet from station 2

. packet from station 4

January 16. 2002

802-17-01-00174, sg_java_01.pdf

Packets passing station 5 – with fine grained rate control

MS-DOS-ledetekst	۶×
Tr 9 x 15 💽 📖 🛍 🔂 😭 🚰 🗛	
	. : : :
	. : :
	: : : I
	: : :
	::
	· : •
24000000 time units passed	:.:
.:.::.	
C:\rpr\jan02\progs\ny-jan4>	
nealest from station ? nealest from station	1

: packet from station 2

• packet from station 4

January 16. 2002

802-17-01-00174, sg_java_01.pdf

Number of packets received per 100 microsec.

number of

packets

New experiment new downstream flow

When the flow from 4 starts, station 4 will be congested. Station 4 sends upstream congestion notification to station 2.

- Same pattern as before for packets passing by staion 5 (not shown)

January 16. 2002

802-17-01-00174, sg_java_01.pdf

New downstream flow

Bursty rate control

Fine grained rate control

Fine grained rate control makes congestion discovery more precise!

January 16. 2002

802-17-01-00174, sg_java_01.pdf

Choke points and fine grained rate control

- I have implemented N VOQ's with N possible choke points and fine grained rate control
 - (The full ring is N+1 stations)
- The allowed rate at each downstream link is **allowUsage[i] / maxRate** (or maxRate[i])
- No extra state needed for fine grained rate control (except whatever is needed in order to send smoothly at this rate)

January 16. 2002

802-17-01-00174, sg_java_01.pdf

VOQ's, Choke Points and fine grained rate control

Two different implementations possible:

• Client notifies MAC on the shortest distance it wants to send a packet, and MAC notifies client when the rate counters have reached 0 for all stations up to the chosen destination station (implementation easier than it sounds because needs to keep track of the link with the minimum rate only)

or

• MAC notifies clients whenever this station is allowed to send a packet to a new destination further downstream. Several notifications may then be sent to the Client with increasing distance to receiver.

January 16. 2002

802-17-01-00174, sg_java_01.pdf

New experiment

- Three flows (500 byte packets)
 - -2 to 8 sends all the time
 - 3 to 7 sends from time 60 to 240 ms.
 - 4 to 6 sends from time 120 to 180 ms.
- Station 2 will experience an increase in number of choke points and their rate
- However in this example VOQ's are not used (only choke points)

802-17-01-00174, sg_java_01.pdf

Packet passings station 5

Fine grained rate control does not give bursts

java-dos
50000000 time units passed
51000000 time units passed
M:\PC\rpr\jan02\progs\W-ck-leaky-234>

• from 2

: from 3

from 4

2.5 Gbit/s One time unit is three ns.

January 16. 2002

802-17-01-00174, sg_java_01.pdf

Packets received

January 16. 2002

802-17-01-00174, sg_java_01.pdf

Conclusion

- Fine grained rate control is easy to implement
 - Also together with choke points and VOQs
 - Rate is allowedUsage[i] / maxRate
 - A packet has to "obey the rates" of all links it passes
- Fine grained rate control makes congestion detection more precise
- Thesis: Fine grained rate control smooths Internet traffic and decreases buffer needs.

January 16. 2002