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Bursty rate control

• Gandalf (and Darwin ?) today:
– OK to send if       (myUsage < allowUsage)

– myUsage is increased when packet sent

• Result:
e.g. 100 microsec intervals:
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This is bad because:

• Downstream node receives the packets 
and checks if it is congested with the 
same 100 us intervals:

• Case 1:

Then the downstream node will find that it is not congested

check-points
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This is bad because:

• Downstream node receives the packets 
and checks if it is congested with the 
same 100 us intervals:

• Case 2:

Then the downstream node will find that it is congested

check-points
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This is bad because:

• Even if the downstream node receives the 
packets and is congested almost all the time, 
it might seem not to be:

• Case 3:

Then the downstream node will find that it is not congested

check-points
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Fine grained rate control

• Send at all packets at   allowUsage / maxRate
rate

• Implemented in my Java simulator 

• Result:

Thesis:  This is much better for everyone ”downstream” 
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Experiment – new upstream flow

2           3         4          5          6          7      8

All the time
(0 to 180 ms)

from time 60
to time 120 ms

When the flow from 2 starts, it will congest station 4.
Station 4 sends upstream congestion notification to station 2. 



January  16.  2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Simulation results
• Sequence of packets passing station 5

– 500  bytes packets

• Number of packets received per unit
time (100 microsec) at stations 6 and 8

2           3         4          5          6          7      8

All the time

from 
time 60
to time 
120 ms
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Packets passing station 5 –
bursty rate control

: packet from station 2                    . packet from station 4
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Packets passing station 5 –
with fine grained rate control

: packet from station 2                . packet from station 4
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Number of packets received per 100 microsec.
is the same
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New experiment  -
new downstream flow

2           3         4          5          6          7      8

All the
time

from time 60
to time 120 ms

When the flow from 4 starts, station 4 will be congested.
Station 4 sends upstream congestion notification to station 2.

- Same pattern as before for packets passing by staion 5 (not shown) 
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New downstream flow

station 8 

station 6 

station 8 

station 6 

Bursty rate control Fine grained rate control

Fine grained rate control makes congestion discovery more precise!
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Choke points and 
fine grained rate control 

• Java simulator with VOQ’s, up to N choke points 
and fine grained rate control 
– (The full ring is N stations)

• The allowed rate at each choke point i, is
allowUsage[i] / maxRate (or maxRate[i])
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New experiment

• Three flows   (500 byte packets)

– 2 to 8 sends all the time
– 3 to 7 sends from time 60 to 240 ms.
– 4 to 6 sends from time 120 to 180 ms.

• Station 2 will experience a change of choke point 
and its rate

• However in this example VOQ’s are not used
(only choke points) 
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The new experiment –
three flows

2           3         4          5          6          7      8

All the 
time

from time 60
to time 240 ms

from time 120
to time 180 ms
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Packet passings station 5

. from 2

: from 3

| from 4

Fine grained rate control does not give bursts

2.5 Gbit/s

One time 
unit is 
three ns.
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Packets received 
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Part 2
Performance of 

Medium priority traffic

Latency of 
medium priority traffic vs

high priority traffic vs
low priority traffic
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Simulation Scenario - A
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Starts to measure latency 
when first in queue

MAC – station 8

Client of station 8

H M L

High prio

Medium/Low prio

Transit buffers
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Latency of medium priority packets

• Congestion threshold in the low/medium transit 
buffers are  25 000 bytes in my simulations

• At 1Gbyte/sec this is 25 microsec delay

• From station 8 to station 15 there are 6 transit 
buffers:              6 * 25 microsec = 150 microsec

• In my experiment (previous slide), with overloaded 
ring, medium priority traffic have ~270 microsec
mean (which is ~100 microsec more than in an 
empty ring)
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Conclusion 1 (rate control)

• Fine grained rate control is easy to implement
– Also together with choke points and VOQs

– Rate beyond choke point is  allowedUsage[i] / maxRate
where i is the choke point

• Fine grained rate control makes congestion detection 
more precise and hence improves fairness

• Thesis: Fine grained rate control smooth traffic and 
decreases overall buffer needs.
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Conclusion 2  (medium priority traffic)

• Medium priority traffic behaves as 
expected:
– Medium priority traffic enters the ring 

immediately
– The maximum delay is the number of stations 

times the delay in each transit buffer

• High priority traffic may delay medium priority 
traffic even more


