
January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Rate Control and
Medium priority traffic behaviour.

Lessons Learned from Java Simulations

Stein Gjessing
Simula Research Laboratory

and University of Oslo

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Contents

• Part 1
– Granularity of rate control

• Fine grained vs bursty rate control
1. Simple version
2. Choke point version

• Part 2
– Performance of medium priority traffic

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Bursty rate control

• Gandalf (and Darwin ?) today:
– OK to send if (myUsage < allowUsage)

– myUsage is increased when packet sent

• Result:
e.g. 100 microsec intervals:

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

This is bad because:

• Downstream node receives the packets
and checks if it is congested with the
same 100 us intervals:

• Case 1:

Then the downstream node will find that it is not congested

check-points

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

This is bad because:

• Downstream node receives the packets
and checks if it is congested with the
same 100 us intervals:

• Case 2:

Then the downstream node will find that it is congested

check-points

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

This is bad because:

• Even if the downstream node receives the
packets and is congested almost all the time,
it might seem not to be:

• Case 3:

Then the downstream node will find that it is not congested

check-points

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Fine grained rate control

• Send at all packets at allowUsage / maxRate
rate

• Implemented in my Java simulator

• Result:

Thesis: This is much better for everyone ”downstream”

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Experiment – new upstream flow

2 3 4 5 6 7 8

All the time
(0 to 180 ms)

from time 60
to time 120 ms

When the flow from 2 starts, it will congest station 4.
Station 4 sends upstream congestion notification to station 2.

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Simulation results
• Sequence of packets passing station 5

– 500 bytes packets

• Number of packets received per unit
time (100 microsec) at stations 6 and 8

2 3 4 5 6 7 8

All the time

from
time 60
to time
120 ms

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Packets passing station 5 –
bursty rate control

: packet from station 2 . packet from station 4

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Packets passing station 5 –
with fine grained rate control

: packet from station 2 . packet from station 4

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Number of packets received per 100 microsec.
is the same

64

32

0
20 22 40 20 22 40

number of
packets

time units (á 3 ms) time units (á 3 ms)

station 8

station 6

station 8

station 6

Bursty Fine grained

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

New experiment -
new downstream flow

2 3 4 5 6 7 8

All the
time

from time 60
to time 120 ms

When the flow from 4 starts, station 4 will be congested.
Station 4 sends upstream congestion notification to station 2.

- Same pattern as before for packets passing by staion 5 (not shown)

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

New downstream flow

station 8

station 6

station 8

station 6

Bursty rate control Fine grained rate control

Fine grained rate control makes congestion discovery more precise!

64

32

0

number of
packets per 100 microsec

time units (3 us) time units (3 us)

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Choke points and
fine grained rate control

• Java simulator with VOQ’s, up to N choke points
and fine grained rate control
– (The full ring is N stations)

• The allowed rate at each choke point i, is
allowUsage[i] / maxRate (or maxRate[i])

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

New experiment

• Three flows (500 byte packets)

– 2 to 8 sends all the time
– 3 to 7 sends from time 60 to 240 ms.
– 4 to 6 sends from time 120 to 180 ms.

• Station 2 will experience a change of choke point
and its rate

• However in this example VOQ’s are not used
(only choke points)

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

The new experiment –
three flows

2 3 4 5 6 7 8

All the
time

from time 60
to time 240 ms

from time 120
to time 180 ms

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Packet passings station 5

. from 2

: from 3

| from 4

Fine grained rate control does not give bursts

2.5 Gbit/s

One time
unit is
three ns.

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Packets received

0

10

20

30

40

50

60

70

12000 20000 28000 36000 44000 52000 60000 68000 76000 84000 92000

Time units (á 3 micosec)

N
u

m
b

e
r

o
s

 p
a

c
k

e
ts

 p
e

r
1

0
0

 m
s f rom 2 to 8

from 3 to 7

from 4 to 6

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Part 2
Performance of

Medium priority traffic

Latency of
medium priority traffic vs

high priority traffic vs
low priority traffic

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Simulation Scenario - A

11

10

9

8

7

6
5 4 3

2

1

0

15

14

13
12

Streaming TDM traffic from 8 to 15

One stream with High priority
and one stream with

Medium priority

Also measuring
Low priority
latency from

station 8 to 15

Background traffic:
LOW PRIORITY
random (all to all)
1 G byte / sec links

25 microsec
station to
station
delay
(~4 km)

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Starts to measure latency
when first in queue

MAC – station 8

Client of station 8

H M L

High prio

Medium/Low prio

Transit buffers

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

0

100

200

300

400

500

600

700

800

30 40 50 60 70 80 90 100

Increasing load with time (ms)

L
a

te
n

c
y

 (
m

ic
ro

s
e

c
)

High priority

Meduim priority

Low priority

overloaded

Low priority packet load increases every 10 ms

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Latency of medium priority packets

• Congestion threshold in the low/medium transit
buffers are 25 000 bytes in my simulations

• At 1Gbyte/sec this is 25 microsec delay

• From station 8 to station 15 there are 6 transit
buffers: 6 * 25 microsec = 150 microsec

• In my experiment (previous slide), with overloaded
ring, medium priority traffic have ~270 microsec
mean (which is ~100 microsec more than in an
empty ring)

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Conclusion 1 (rate control)

• Fine grained rate control is easy to implement
– Also together with choke points and VOQs

– Rate beyond choke point is allowedUsage[i] / maxRate
where i is the choke point

• Fine grained rate control makes congestion detection
more precise and hence improves fairness

• Thesis: Fine grained rate control smooth traffic and
decreases overall buffer needs.

January 16. 2002 802-17-01-00174, sg_java_02.pdf Stein Gjessing

Conclusion 2 (medium priority traffic)

• Medium priority traffic behaves as
expected:
– Medium priority traffic enters the ring

immediately
– The maximum delay is the number of stations

times the delay in each transit buffer

• High priority traffic may delay medium priority
traffic even more

