

# **MAC Performance Comparison**

Harmen R. van As, Kemal Bengi, Arben Lila, Georg Mittenecker, Günter Remsak, Jon Schuringa

Vienna University of Technology, Austria

#### **Contents**

- Introduction
- Heavy Traffic Scenario 1
- Heavy Traffic Scenario 2
- Comparison:
  - No fairness control
  - Cyclic reservation fairness control
  - Gandalf fairness control

#### **IKN: Main Mechanisms**



#### **Transit buffers:**

Only used for collision avoidance and high-priority bypassing

#### **Proactive fairness control**

Control packet with traffic demand matrix is circulating

**Greedy access:** in same cycle i for flows over links which are no bottleneck

Reservation access: in next cycle i+1 for bottleneck flows

Maximal performance because rate scheduling is done on waiting traffic demand, i.e., the mechanism also works when traffic pattern completely changes in every cycle

### **IKN: Improvement of July 2001 Version**

#### IKNv1 July 2001

Control information is modified by all nodes



Receive: new rates for cycle iSend: demand for cycle i+1

- Receive: new rates for cycle i+1- Send: demand for cycle i+2

#### IKNv2 Jan 2002

Control information is not modified

optimal scheduling possible



- Receive: demand matrix for cycle i

- Rate calculation for cycle i

- Send: demand for cycle i+1

- Receive: demand matrix for cycle i+1

- Rate calculation for cycle i+1

- Send: demand for cycle i+2

vas\_permac\_03

# **IKN: Main Properties**

#### Support of

- Multiple traffic classes (real-time strict, real-time loose, best-effort)
- Service Level Agreements
- Heterogeneous link speeds on same ring

#### Control flow and data flow in same direction

(easy for single ring and any configuration of multiple rings)

#### Simple and predictive operation

- Simple and straightforward algorithm
- No heuristic thresholds
- No traffic measurements

#### **Best performance**

- Optimal bottleneck fairness
- Near to fair theoretical throughputs for each flow
- Guaranteed delays
- Very dynamic traffic adaptation

# **Dual-Ring – Traffic scenario 1**



Uniform traffic Saturated sources 16 nodes

Only low priority traffic

**Exponential packet sizes 500 bytes** 

1Gb Links

Cyclic reservation protocol Table round trip: 0.01 sec.

# **Throughput**



# Throughput (cont.)



# **MAC End-to-End Delay**



# **Dual-Ring – Traffic scenario 2**



Uniform traffic 16 nodes

Low & high priority traffic (more low than high)

**Exponential packet sizes 500 bytes** 

1Gb Links

Cyclic reservation protocol Table round trip: 0.01 sec.

# **Throughput (High Priority)**





# **Throughput (Low Priority)**



# **Total Throughput**



### **MAC End-to-End Delay**



#### Conclusion

Combined greedy and cyclic reservation access performs at the theoretical fair limits

#### **Excellent performance in terms of**

- Throughput
- MAC end-to-end delay