## 802.17 presentations

**O** Prepared for 802.17, March 2002

 David V. James, PhD Chief Architect
 3180 South Ct
 Palo Alto, CA 94306
 Tel: +1.650.494.0926
 Cell: +1.650.954.6906
 Fax: +1.360.242.5508
 Email: dvj@alum.mit.edu

### **Time-to-live checks**

**O** Prepared for 802.17, March 2002

 David V. James, PhD Chief Architect
 3180 South Ct
 Palo Alto, CA 94306
 Tel: +1.650.494.0926
 Cell: +1.650.954.6906
 Fax: +1.360.242.5508
 Email: dvj@alum.mit.edu

### **Time-to-live rationale**

- **O** Uniform aging protocol
  - Still supports 255 stations
- **O** Simplified strip rules
  - No topology-database dependency
  - Deadlock eliminated
  - Less wrap-invoked discards
- **O** Detailed test
  - dvj\_Clause06\_timeToLive\_02.pdf



### **Time-to-live checks**



dvj\_slides\_01.doc



### **Unidirectional flooding**



dvj\_slides\_01.doc



### **Bidirectional flooding**



dvj\_slides\_01.doc

### **Uniform frame formats**



### **Historical evolution**



#### JG&G Unidirectional address mappings





### **Purge consistency assistance**



#### JG&G Destination consistency check (for quiet pass-through)



## **AD flooding conclusions**

- **O** Fully capable
  - Unidirectional/bidirectional & steer/wrapped
- **O** No frame tax
  - Local router-like traffic
  - Global intermediate transparent bridge
- **O** Four-address equivalents
  - Confidence in completeness
  - Diagnostic monitors are missing nothing
- **O** Defensible header format
  - Minimal 16 bytes, 8-byte "aligned"
  - No "special" parity/HEC/FCS for fairness or idle
- **O** Limitations:
  - Overhead for bidirectional-loop steering (but bidirectional w/wrapping is possible)



## **Transit buffer ad-hoc<sup>3</sup>**

## **Baseline assumptions**

- **O** Multiple options shouldn't complicate the standard
- **O** Lossless transmissions, except for:
  - link failures (cable cuts)
  - transmission errors (noise)
- **O** Cannot mandate large 2nd transit buffer
  - the cost/efficiency set by vendor
  - optimal size depends on link lengths
- **O** Dual-queue stations are uncompromised by others
  - TDM-like bandwidth affects affect only on-path links
  - jitter is unaffected by through-queue replacements
  - (sigh) TDM-like traffic is unclaimable if:
    - Sourced by a small dual-queue station
    - Sourced by a thru-queue station



### **Jitter measurements**



(jitterT-jitterD)= 0

## **Ad-hoc conclusions**

**O** Don't constrain transit designs

- notation "buffer" → "queue"
- enforced FIFO ordering
- precedence: 1<sup>st</sup> queue > 2<sup>nd</sup> queue
- (any more is controversial)
- **O** Vendor flexibility
  - any 2<sup>nd</sup> transit-queue sizing > 2\*MTU
  - shall maintain jitter behaviors
  - don't complicate the specification
  - 2<sup>nd</sup> size of zero → 1<sup>st</sup> size is *nominal* 1MTU
  - (unclear if 2<sup>nd</sup> size of zero implies complexity)

## **Proposal options**

- All RPR stations shall have two transit queues. The minimum size of both queues is 2 MTUs.
- **O** All RPR stations shall have either:
  - a) Two transit queues.
    - The minimum size of both queues is 2 MTUs
  - b) One transit queues.
    - The nominal size of this queue is 1 MTU (as perceived by normal pass-through traffic)
- *Expected* decisions would be based on:
  - How is specification complexity measured?
  - What is the default draft content?



## **CRC calculations**

## **CRC processing**

- **O** Store&forward/Cut-through agnostic
- **O** Invalid data is effectively discarded
  - store-and-forward discards
  - cut-through stomps the CRC
- **O** Maximize error-logging accuracy
  - Separate header&data CRCs
  - "most" corruptions hit the data

JG&G

### Separate header and data CRCs



dvj\_slides\_01.doc

### **Cut-through CRCs**



- Corrupted packet remains corrupted
- Error logged when first detected
- if (crcA!=crc) {
   errorCount+= (crcA!=crc^STOMP);
   crcB= crc^STOMP;



### **Distinct CRCs reduces discards**



Discard the corrupted packet

dvj\_slides\_01.doc



### **End-to-end CRC protected TTL**





## **CRC** equation examples

| a = c( | )0^d00; | b= c | 01^d01 | ;        |      |    |
|--------|---------|------|--------|----------|------|----|
| C = C( | )2^d02; | d= c | 03^d03 | ;        |      |    |
| //     | •       |      |        |          |      |    |
| s= c1  | 4^d14;  | t= c | 15^d15 | ;        |      |    |
| c00=   | a^      | e^ g | ^h^    | m^       |      |    |
| c01=   | b^      | f^   | h^j^   | n^       |      |    |
| c02=   | C ^     | g    | ^ j^k  | <b>^</b> | p^   |    |
| c03=   | ď       | N    | h^ k   | ^m^      | r^   |    |
| c04=   |         | e^   | j ^    | m^n^     | S    | ^  |
| c05=   |         | f^   | k      | ^ n^     | p^   | t^ |
| c06=   | a^      | e^   | h^     |          | p^r^ |    |
| c07=   | b^      | f^   | j^     |          | r^s  |    |

## **CRC requirements**

**O CRC computation order** 

- MAC optimized & PHY independent
- PHY optimized and 2 MAC orderings
- **O** Define the "stomp" value
  - For HEC as well as FCS
- **O CRC parallel computations** 
  - X8, x16, x32 are easily done
  - X64 is harder to print in "portrait"
  - ?? data values as C-code comments ??



# **Time-of-day synchronization**



#### **Time-of-day master and slaves**



#### JG&G

#### This is not bit-clock synchronization!



|p0| < 100PPM |p1| < 100PPM |p2| < 100PPM |p3| < 100PPM



### This is time-of-day synchronization!





#### **Precise duplex-link synchronization**



dvj\_slides\_01.doc



## **Setting bandwidths**

dvj\_slides\_01.doc



#### **Negotiated bandwidths**





#### **Bandwidth negotiations**



- **O** Sum of bandwidths < link capacity
- **O** Independent accounts
  - class-A0 and class-A1 rates
  - class-B rates
  - class-C weightings
- **O** Accounts are distance dependent



#### **O BW accounts have spatial dependencies**

**O** Available BW has monotonic decrease



#### **Allocation update sequence**

3) Distribute revised accounts



#### **Concurrent conflicts**





dvj\_slides\_01.doc

### **BW** allocation conclusions

- **O BW allocation is necessary to ensure consistency**
- O BW allocation should include spatial reuse
   Worst-cast hop-count OK for simple stations
- **O** No central tables are required
- **O MAC-identifier suffices for tie resolution**
- **O** Some error-recovery details may be necessary
- We need philosophy, not technical, agreement. (sufficient detail exists for first-round inclusion)



### **Frame formats**

#### **RPR Frame Format**



#### **Ethernet Frame**



#### **Control Frame**





# **Control Field Functionality**

JG&G

#### **RPR Frame Format**



1) 32-bit aligned

- 2) 32-bit checksum
- 3) Global MAC addresses (not local)

#### **Robust TTL accounting**







dvj\_slides\_01.doc

#### **Global and local priorities**





### **Ring&wrap flags**



JG&G



dvj\_slides\_01.doc

### **Ethernet Bridging**





dvj\_slides\_01.doc