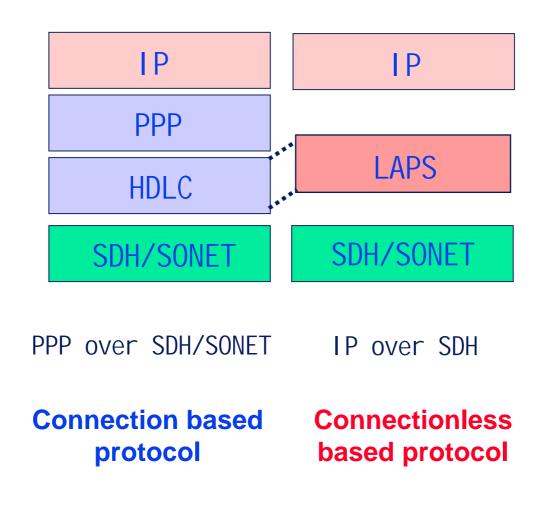
Ethernet Flow Mapping to RPR (fields and timing) Comments to 802.17 Atlanta Jan. 2003 meeting

Mr. Yu shaohua, Rapporteur of Q.7/17, WP2 Shyu@fhn.com.cn

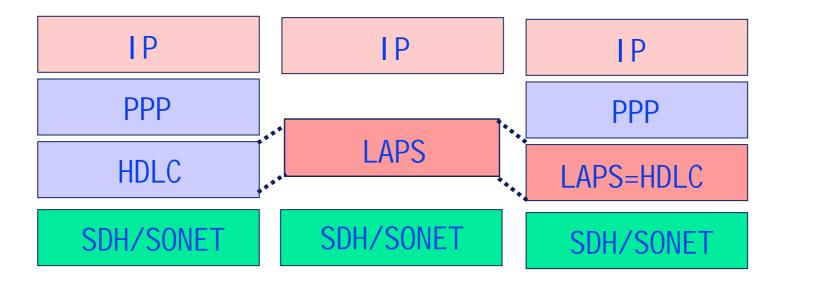
Responsibility of SG17: Data Network and Telecom Softare

Responsibility of Q.7/17: IP related Low layer Protocols and Service Mechanisms

Major Work in Q.7/17 in the last few years


- (1)ITU-T Recommendation X.85/Y.1321 on IP over SDH using LAPS
- (2)ITU-T Recommendation X.86/Y.1323 on Ethernet over LAPS
- developed by SG17

X.85/Y.1321 (IP over SDH using LAPS) milestone


- **1**、 Delay contribution from August 1998
- 2. It was acceptable by ITU-T SG7(Data network and Open
- System Communication) at the September meeting, 1998
- **3**、 X.85/Y.1321 on IP over SDH using LAPS was <u>determined at the June</u> <u>1999 meeting</u>
- **4**、 Recommendation X.85/Y.1321) was approved at March 2000 meeting

Comments from:

- 1、IETF and ISOC
- 2、ITU-T SG15 (Optical and other transport networks)
- 3、ITU-T SG11 (Signaling requirements and protocols)
- **4**, **ITU-T SG13 (Multi-protocol and IP-based networks and their internetworking)**
- 6, Lucent
- 6, Nortel
- **7**、NTT
- 8、Juniper
- 9, Swisscom
- **10**, Lots of email from Vendors and Carriers

LAPS is compatible with RFC 2615

PPP over SDH/SONET IP over SDH

PPP over SDH using LAPS

X.86	vs. RFC 2	2615					
			1	62 frame			
Flag	Address	Control	Protocol	RFC 1661 fram		FCS	Flag
01111110	11111111	00000011	8/16 bits	PDU	Padding	16/32 bits	-
Flag	Address	Control	SAPI	IPv4 and	IPv6	FCS	Flag
01111110	00000100	00000011	16 bits	PDU		32 bits	01111110
			- X.85	frame —		·	

What is X.85 benefit

- **1**、 Simple implementation
- 2、High efficiency in the POS line card of router
- 3、Function equivalent to PPP/HDLC
- 4. Performance of Carrier concern
- 5、Compatibility with PPP/HDLC and SPI/POS
- 6、Test equipment
- 7、 Chips available and vendors support

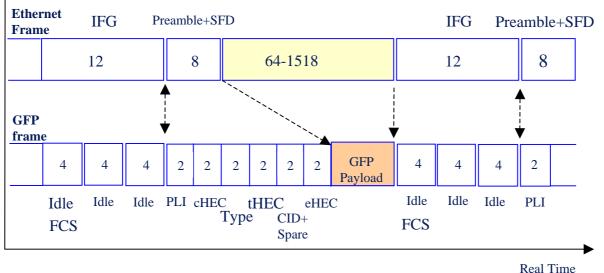
X.86 milestone

- 1、 Delay contribution from May 1999
- 2. It was acceptable by ITU-T SG7(Data network and Open

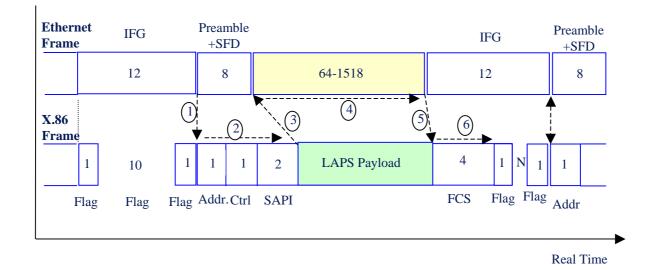
System Communication) at the June meeting, 1998

3、X.86 on Ethernet over LAPS was <u>determined at the March 2000</u> meeting

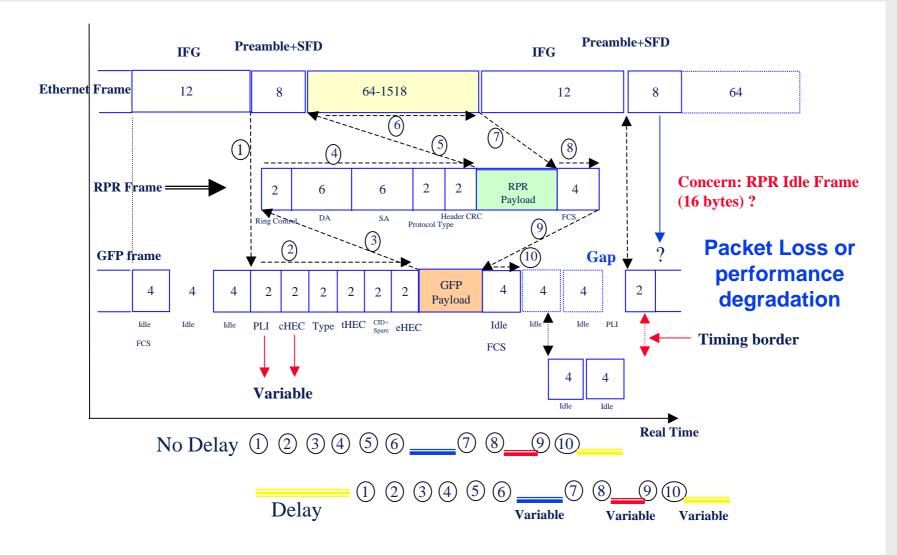
4. Recommendation X.86 on Ethernet over LAPS (TD 2046/Rev.1) was approved at Feb. 2001 meeting


The competitive advantages of X.86

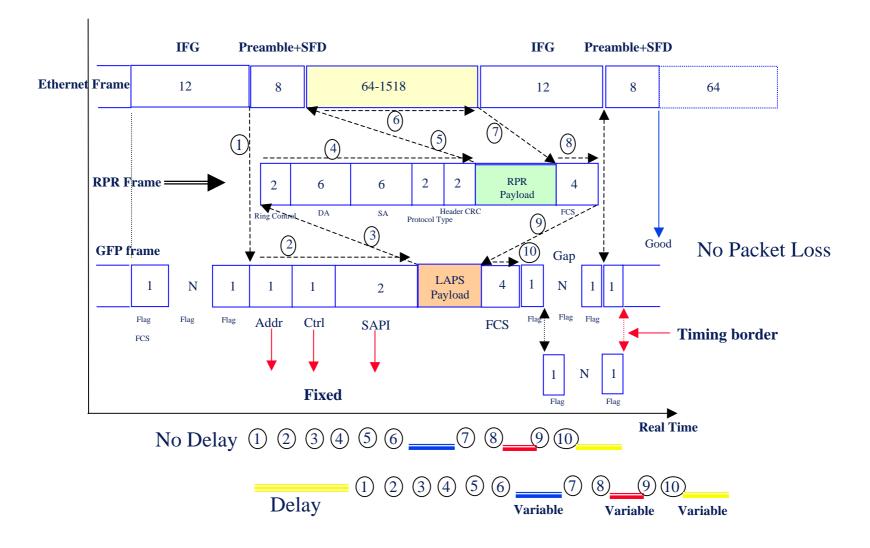
- Solutions to both byte and bit oriented, it is very useful to RPR PHY options for SONET and Ethernet MAC PHY
- Remote Trail Performance Monitoring
- Remote Fault Indication
- IEEE802.3x Active Flow Control in Burst Traffic Condition
- Low Price and Ease of Use (Compared to LANE)
- Low Latency and Low Latency Variance
- 1+1 redundancy based Ethernet and Gigabit Ethernet service (SONET provide)
- Target at existing telecom transport resources


X.86 does match Ethernet and Gigabit Ethernet very well

IFG Preamble +SFD			802.3	MAC Frame				
12 Bytes 8 Bytes				Bytes	64 Bytes		=84 Bytes	
Flag		Flag	Addr	Cont	SAPI	802.3 MAC	32-Bit CRC	Flag
1	10	1	1	1	2	64	4	


=84 Bytes

Bytes Mapping of Ethernet/GFP


Bytes Mapping of Ethernet/X.86

Bytes Mapping of Ethernet/RPR/GFP

Comments to RPR idle

- Gap of data frames from client is random, including Ethernet and TDM, granularity of 4-byte or 16-byte idle is much great for the real-time services
- Some performance degradation will occur, due to atomic operation between RPR data frames: insertion/extraction of 4-byte idle (GFP) and 16-byte idle (RPR)

Bytes Mapping of Ethernet/RPR/LAPS

Comparison of Measurement, X.86 vs GFP

	GFP	LAPS/X.86	Percentage	
64bytes	10.520 µs	9.658 µs	8.9% higher	
1518bytes	203.620 µs	133.967 µs	51.9% higher	
9.6Kbytes	Not supported	769.567 µs		

Note: Data comes from HDMP-3001, Agilent and WRI joint development X.86 system devices has been deployed more than 12 provinces in China

Proposal:

(1) Use ITU-T LAPS in sub-clause 7.4.2.2 – Byte synchronous HDLClike framing adaptation

(2) Use LAPS flag (0x7E) and cancel 16 bytes idle in order to support those services with low delay and latency

Thank you