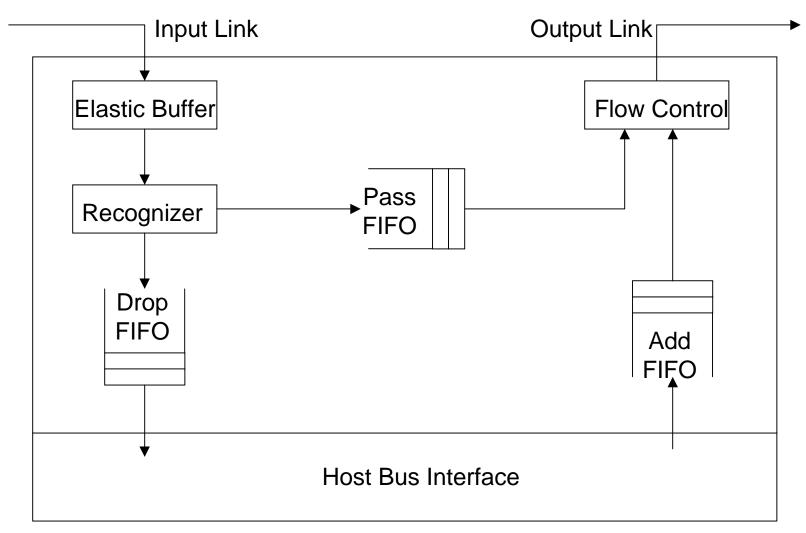


Assessment of Scalable Coherent Interface (SCI)

Jason C. Fan jfan@luminousnetworks.com

July 11-13, 2000

IEEE 802 Plenary – La Jolla, CA: RPRSG


Purpose of SCI

- SCI serves as an "open" distributed bus
 - Provides low-latency supercomputer interconnect
 - Solves scalability problems of centralized buses
 - Provides bus-like behavior and services
 - Transactions: read, write, lock memory locations
 - Optional cache coherence
 - Enables connection of up to 64K nodes in topologies including single-ring or multi-ring

Block Diagram of SCI

July 11-13, 2000

IEEE 802 Plenary – La Jolla, CA: RPRSG

SCI: General Information

- Standardized in IEEE Std 1596-1992
- Plesiochronous
 - 16-bit "Idles" between packets provide elasticity control
 - Separate clock and SOP/EOP flag signals
- Packetized
 - Variable-length packets, 16 bytes header, up to 256 bytes payload
 - Header includes
 - Bandwidth allocation and flow control fields
 - 16-bit addresses
 - Transaction number
 - Time of death

Packet types: request send, request echo, response send, response echo (only 2 virtual circuits per node) July 11-13, 2000

SCI: Fully Reliable

- SCI must ensure fully reliable communications
 - Uses node-to-node request/response/acknowledge protocol
 - Uses split transactions to prevent deadlocks
 - Requests and responses are independent
- This protocol is not required in RPR
 - Would result in unnecessary increased complexity
 - Each node supports only requests and responses without external interfaces - an isolated network

SCI: Extremely Low-Latency

- SCI must ensure extremely low latency (a few microseconds or less)
 - Interconnect length usually limited to 200 meters for fiber, 15 meters for copper
 - Pass traffic always prioritized over add traffic
 - Node-to-node flow control and packet sequencing ensure that responses occur in phased order (overloaded server case)
 - Phase A responses occur before Phase B requests are accepted
 - This approach used as a transport layer backoff mechanism
- This is a different application from RPR
 - RPR will be over significantly larger distances
 - No need for phased requests/responses

SCI: Bandwidth Allocation

- SCI does not fully enforce fairness
 - Pending requests overflow at node => node enters state A, during which new requests are rejected and moved to state B
 - No delay measurements, bandwidth estimation, or random packet discard
- BW allocation messaging is via modifiable idle characters
 - Node can prevent starvation by preventing exit from state A (or B) while it still has A requests to send
 - Node can force insertion of higher priority packet
 - Other nodes forced to stop transmitting based on notification

Issues with SCI BW Allocation

- SCI uses its own physical layer encoding non-Ethernet based and non-SONET based
 - BW allocation tied to this physical layer mechanism
- SCI handling of priority is inefficient
 - Other nodes forced to stop transmitting for a node to be able to transmit a high priority packet

Summary of SCI Assessment

- SCI is built for an application with fundamentally different requirements from RPR
 - Unnecessarily complex for RPR
 - Division of functions among networking layers is different from normal data networking approach