

1

Survivability Input to Resilient Packet Ring Study Group

11 July 2000

Bob Hott

Naval Surface Warfare Center Dahlgren Division HottRW@nswc.navy.mil (540) 653 - 1497

Introduction

- **NSWC Dahlgren Division Mission**: U.S. Navy's principal research, development, and test & evaluation activity for
 - surface ship combat systems,
 - ordnance,
 - mines and mine countermeasures,
 - strategic systems,
 - amphibious warfare, and
 - special warfare systems

• Information Transfer Technology Group Mission:

Provide technical leadership to the surface Navy community for shipboard networking technology for application in current and future baselines

Focus on technology issues critical to the real-time environment of the tactical Navy

- The shipboard environment has many of the same communications requirements that face commercial organizations
 - Support for voice, data, video and imaging, etc...
 - Security
 - Quality of Service (e.g., bandwidth, latency)
- Historically, each shipboard system would address its communications requirements in its own way, typically with built-to-spec systems and point-to-point links
 - Advantages: met initial requirements
 - Disadvantages: Scalability, technology refresh, cost ?

- Today, various commercial off-the-shelf (COTS) components and technologies are being used by shipboard systems.
 - Advantage: Scalability, bandwidth, technology refresh, cost ?
 - Disadvantages: Mission critical system requirements, component and technology obsolescence
- Some of the standard networking technologies in use:
 - FDDI
 - ATM and LAN Emulation
 - Ethernet and Fast Ethernet
 - Internet Protocol (IP) and associated protocols

Architecture Evolution (Equipment)

Mission Critical Networking Requirements

- Requirements vary by shipboard system. The include
 - Survivability,
 - Performance,
 - Security, and
 - Scalability
- Survivability
 - Availability and reliability.
 - Redundancy. This refers to the components, the links, and the ability to continue operation in the event of failures.

Mission Critical Networking Requirements

- Performance
 - Throughput. This is measured from application to application across the network infrastructure.
 - Latency. This is also measured from application to application, across the network infrastructure.
- Security
 - This includes data classification (e.g., Unclassified, Secret) security and information security and protection (e.g., encryption, filtering, access control, logging).
- Scalability
 - Bandwidth. This implies the ability add bandwidth between end systems or between components of the network infrastructure.
 - Systems. This implies the ability to add additional end systems or components of the network infrastructure

FDDI for Mission Critical LANs

- Hardware redundancy and survivability are built into FDDI standard
- Reconfiguration on order of hundreds of milliseconds
- End-to-end or backbone technology
- Disadvantages:
 - Small FDDI market

FDDI is going away!

*[Hiles and Marlow, **Experimentation on the Concentrator Tree with Loopback**, 1993]

Ethernet for Mission Critical LANs

- Advantages:
 - Bandwidth Scalability
 - 10/100/1000/... Mbps
 - Link Aggregation
 - Switching
 - End-to-end or backbone technologies
- Disadvantages:
 - Slow reconfiguration (Spanning Tree)
 - Scalability WRT survivability
 - Survivability not transparent to applications

Add a 3rd Switch!

ATM for Mission Critical LANs

- Advantages:
 - PNNI for infrastructure survivability
 - Bandwidth scalability
 - Native QoS
 - End-to-end or backbone technology
- Concerns
 - Survivability of servers
 - Scaling of multicast / broadcast
 - Small market
- Disadvantages:
 - Survivability not transparent to applications
 - ATM servers

Is this the next FDDI?

Why an Interest in Resilient Packet Ring?

Backbone technology

- Survivability
 - multiple paths
 - rapid reconfiguration (?)
 - FDDI-like characteristics (?)
- Scalability
 - bandwidth
 - addition of nodes
- Quality of Service (?)
- Multicast / Broadcast Support (?)
- End-to-end technology
 - Survivability
 - Quality of Service (?)
 - Multicast / Broadcast Support (?)

Is this the next FDDI? Is that good or bad?

Summary

- The U.S. Navy is interested in open, COTS-based networking solutions that are fault tolerant and scalable.
- The U.S. Navy would be interested in such networking solutions that can provide
 - End-to-end latencies of less than 200 microseconds
 - Scalable end-to-end throughput greater than 100 Mbps
 - End-to-end outage of less than 1 second due to a network fault (i.e., reconfiguration time includes the detection and recovery from the network fault)
 - The ability to interface with other open, COTS-based networking solutions (e.g., routers, switches, encryption devices)