Alternate Fairness Algorithm

Current FA

- Positive points on the current Fairness Algorithm
 - Small FA message
 - Simple FA message handling to ensure fairness
- Issues with the current Fairness Algorithm
 - Lack of analytical model for FA evaluation
 - Stability and stability margin
 - Transient response characteristics
 - Intuition based fairness algorithm parameter adjustment
 - Simulation work is very sensitive to traffic pattern and configuration
 - Complicated fair rate generation rules
 - Number of adjustable parameters (16 configurable parameters)
 - Rate adjustment mechanism is highly non-linear

Objectives

- Keep the current fairness message format
 - The fairness message is to advertise the fair rate
- Keep the current fairness message processing (without corner cases)
 - If (normLocalFairRate < rcvdRate)
 - Use and advertise rcvdRate
 - Else
 - Use and advertise normLocalFairRate
- Work out a mechanism to compute normLocalFairRate so that
 - Analytical model for the feedback system can be obtained
 - Parameters can be adjusted so that the trade-offs between the stability margin and transient response time can be quantified.
- Interwork with the current fairness algorithm (no analytical model available)

Fairness Algorithm

- To ensure fairness among all the transmitting stations
 - Achievable via current fairness message handling procedure (i.e. the rate is controlled to never exceed the advertised rate, after normalization)
- To ensure high utilization on the immediate downstream link
 - To work out a mechanism to compute the normLocalFairRate
 - Current aggressive and concretive mode are two examples
 - Alternate Fairness Algorithm will be just another example, which inter-operate with the existing fairness algorithm

Indulgence of the WG

- Include the alternate FA in the future 802.17 document if objectives are achieved
- Needs brain-power, both analytical and simulational, to finish the task