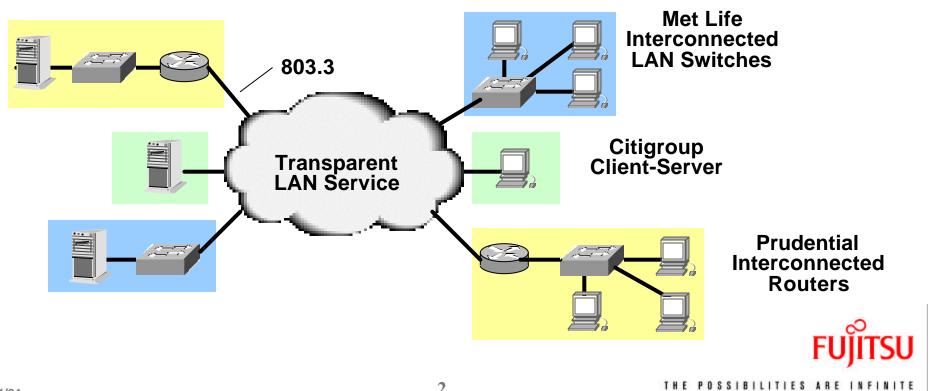


**Bob Sultan** 

bob.sultan@fnc.fujitsu.com

Ajay Sahai

Sushil Pandhi

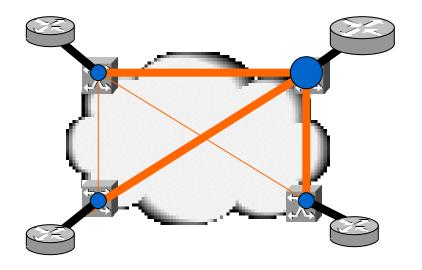

Fujitsu Network Communications





## **Transparent LAN Service**

- users interconnected as if over Ethernet LAN
- LAN 'private' to each customer (customer separation)
- usual Ethernet features (VLAN, priority, flow control)

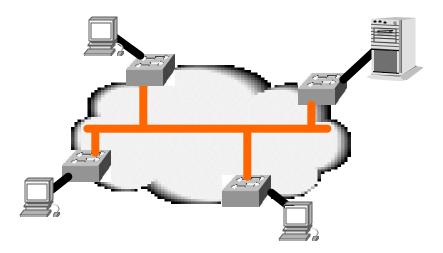





## Frame Relay Service Model

- Port-rate (per port)
- **■** Committed Information Rate (per PVC)
  - Between N-1 and N(N-1)/2 Connections

4 Kbps. CIR
16 Kbps. CIR
64Kbps. port
256Kbps. port

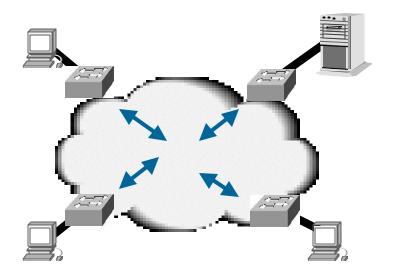







# **Aggregate-Rate Service Model**

- Single aggregate rate shared among enterprise users
  - model as shared medium like collision-based Ethernet
- Provision one aggregate rate vs. many PVCs
- 'Collision' occurs when senders' aggregate exceeds provisioned aggregate rate (per customer)
  - 'collision' does not abort transmission (as in Ethernet)
  - throttle heavy user(s) to reduce future 'collisions'

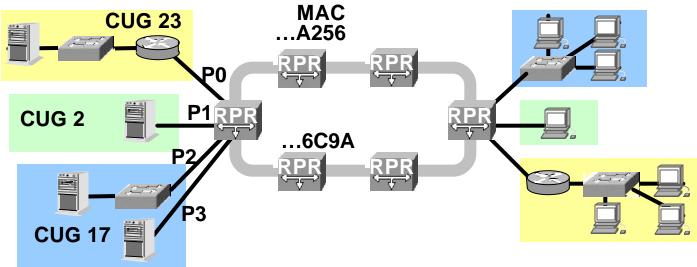







#### **Best Effort Service Model**

- No bandwidth guarantees
  - uses bandwidth available after guaranteed traffic
- Throttle heavy user(s) when congestion detected
  - do not penalize well-behaved users

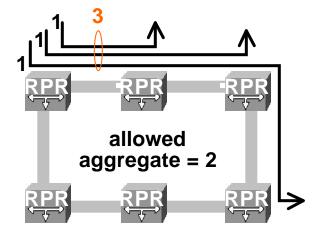


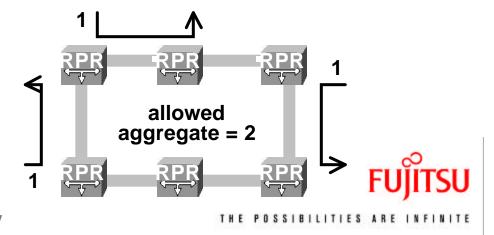





### **Transparent LAN Service over RPR**

- User 802.3 encapsulated in 802.17
- Customer separation by Closed User Group (CUG)
- Customer port identified by MAC.PORT
  - Allow multiple ports of same CUG per 802.17 MAC@

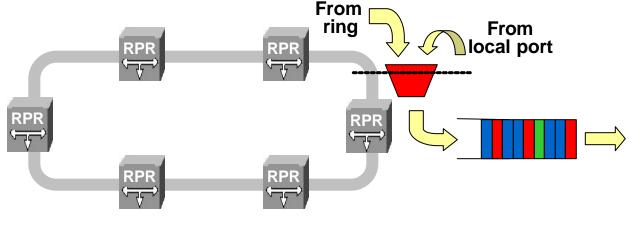





## **Aggregate Rate Guarantee**

- Rule: 'provisioned aggregate' exceeded on link implies 'provisioned aggregate' exceeded on ring
  - so monitor for 'provisioned aggregate' exceeded on link
- 'provisioned aggregate' exceeded on ring is not detected if 'provisioned aggregate' not exceeded on link
  - but allowed as the resource commitment is unaffected

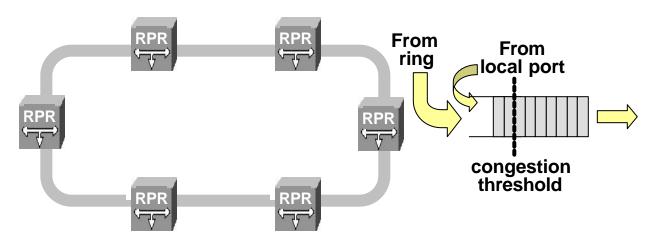







## **Aggregate Rate Guarantee Model**

- Leaky bucket per CUG on transit and local traffic
  - enforce aggregate rate
- Detect threshold crossing on leaky bucket
  - throttle individual sender within CUG
  - throttle alternatives
    - similar to 802.3 PAUSE (but unicast)
    - request to reduce ingress rate (followed by growth)
- Place frame on guaranteed-service queue

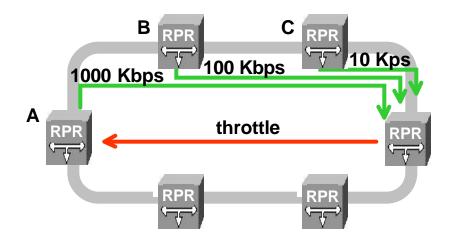


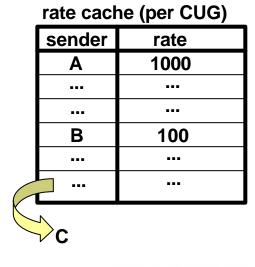

POSSIBILITIES ARE INFINITE



#### **Best Effort Model**

- Place frame on best-effort queue
  - Drop frame when buffer unavailable
- Detect threshold crossing
  - throttle individual sender to avoid buffer depletion



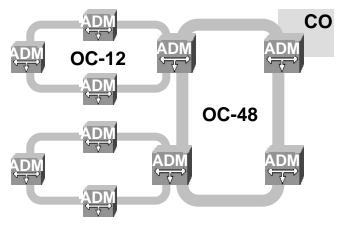





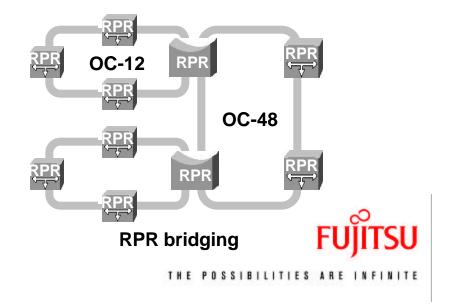

# **Choosing Source to Throttle**

- Cache most active senders
  - including local ports
  - per CUG for guaranteed service
- Choose (e.g. rotation) among most active sources
  - Send THROTTLE control message to one source
  - THROTTLE other sources after time interval as needed








# **RPR Ring Interconnect**

- Hierarchical SONET ring topologies deployed today
  - Strong requirement to extend RPR across rings
- Tree topology sufficient since rings are protected
  - STP not required
- Assume RPR bridge inherits properties of 802.1D
  - make exceptions/additions as needed



**SONET ring hierarchy** 





# **Stripping Broadcast Frames at Ring Ingress Bridge**

- **■** Broadcast frames stripped at source RPR node
- Bridge X forwards broadcast from ring 1 to ring 2
- Bridge X must strip frame after circulation
- Frame carries ingress Bridge ID for recognition





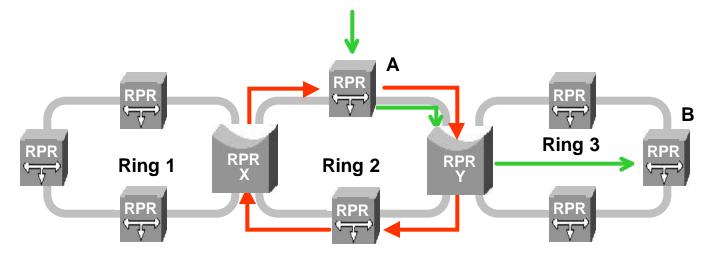


## **Caching Egress Bridge Identity**

- Bridge X can learn that
  - frames for destination B reached via ring 2
    - bridge X sends frame 'circulate to all bridges on ring'

OR

- frames for destination B reached via bridge Y
  - bridge X sends frame on ring 2 with Bridge Y ID
- Directed bridging allows spatial reuse
  - implies that MAC frame carries identity of egress bridge

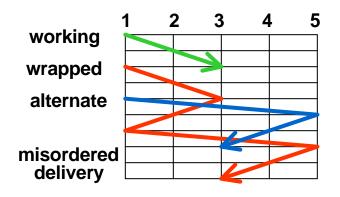


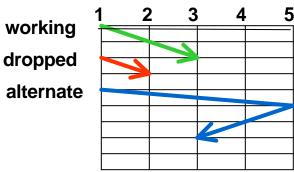





## **Caching Egress Bridge Identity at Source**

- RPR host node A can
  - circulate frames for destination B (not on local ring)OR
  - direct frames for destination B to bridge Y
- Directed bridging allows spatial reuse
  - implies MAC frame carries identity of egress bridge
  - bridging is not transparent to host node






#### **Protection**

- Steering -> dropped frames during recomputation
- Wrapping -> period of misorder on switchover
- Wrapping benefit when recomputation time is long
  - Our assumption that recomputation time is short
  - Failure notification broadcast speeds recomputation
- Steering preferred
  - appears generally simpler









#### **Frame Format**

- Generally consistent with GFP
  - Source / Destination MAC (802 MAC)
  - TTL (8 bits)
  - priority (3 bits)
- Additional or modified
  - Source / Destination Port Identifiers (8-bit)
    - 4-bit GFP port insufficient
  - CUGID (16-bit)
  - Ingress / Egress bridge identifier (MAC@)
    - reserved value for 'all bridges on ring'





# No Requirement for the Following

- Jumbo Frames (encapsulate 802.3)
- TDM / circuit emulation (use SONET)
- Different link speeds between nodes
- Explicit support for 802.1D/Q
  - subscriber 802.3 traffic is encapsulated
  - RPR supports functions analogous to 802.1D/Q/p
- Spanning Tree Protocol (limit to tree topology)





### **RPR Requirements**

- Physical Layer Mapping
  - OC-3 to OC-192 link rates
  - NxSTS-1 and NxSTS-3c Virtual Concatenation
- Interoperability within ring
  - standard not meaningful without node interoperability
  - essential for low-cost RPR hardware
- Interoperability between rings (bridging)
- Protection Protocol (steering if < 50ms.)</p>
- Topology Protocol
- Guaranteed and Best-Effort Service Classes





## **RPR Requirements**

- Customer separation
  - no data leakage among customers
  - dynamic registration of CUGs
    - analagous to VLAN registration (reuse GVRP)
- Bandwidth isolation among customers
  - absolute for guaranteed-service
  - approximate for best-effort
- Bandwidth management for Guaranteed Service
  - ingress policing of 'provisioned aggregate' per CUG
  - link policing per CUG (support aggregate-rate SLA)
  - rate threshold per CUG (congestion control)
- Congestion control
  - source rate cache (per CUG for guaranteed service)
  - PAUSE or source-rate reduction request





## **Summary**

- RPR supports aggregate-rate service model
  - significantly reduced provisioning
- Enforce aggregate-rate on ring by enforcing on link
- Source throttle for congestion control
  - sender rate caching
- Ring interconnection is key requirement
  - base is 802.1D but significant changes required
  - spanning tree not needed
- Reuse VLAN concepts for CUG

