

Performance Adhoc Committee IEEE 802.17

Khaled Amer

IEEE 802.17 Plenary Meeting

March 2001

Agenda

- Objectives
- Simulation setup and parameters
- Results and analysis of various scenarios
- Next steps

These are preliminary incomplete results of work still in progress

Objectives

- Investigate the performance characteristics of a ring of Ethernet Switches:
 - Enable comparing the results with the performance characteristics of 802.17
 RPR solutions
 - Quantify areas of strength for 802.17 solutions as compared to Ethernet switches

Objectives ...

- Focus on fairness in:
 - Bandwidth utilization including locality fairness
 - ETE delay

Methodology

- Follow the methodology that the performance adhoc committee is in the process of defining
- Eliminate parameters of specific switches whenever possible:
 - Infinite buffers
 - Huge switching capacity rate

Simulation setup

- Node count: Ring of 8 nodes
- Ring circumference: 100Km
- Ring Rate: 10 Gbps
- Packet size: 1250 Bytes
- Configurations:
 - Hubbing
 - Next hop

Simulation setup ...

• Low traffic at the beginning to force Spanning Tree Protocol to break the ring at a predictable point

Switch Parameters

- Generic switch
 - 10 Gbps ports
 - Try to eliminate parameters of specific switches
- Store-and-forward
- Switch service rate: 10M packets/second

March 2001

Metrics

- Throughput
 - In overload conditions
 - Per node (for now)
- ETE delay

Hubbing Topology Scenario I

Results: Hubbing Topology Scenario I

Hubbing Topology Scenario II

Results: Hubbing Topology Scenario II

Hubbing Topology Scenario III

- Similar to Scenario II except:
 - Station 2 is sending traffic twice what Station 1 is sending.
 - Station 2 is sending 10 Gbps
 - Station 1 is sending 5 Gbps.

Results: Hubbing Topology Scenario III

Hubbing Topology Scenario IV

Results: Hubbing Topology Scenario IV

Hubbing Topology Scenario V

Results: Hubbing Topology Scenario V

Next Hop Topology Scenario I

Results: Next Hop Topology Scenario I

Next Hop Topology Scenario II

- Similar to scenario I except
 - Each station generates Poisson traffic at a 1 Gbps rate.
 - This was done to insure that none of the links will be overloaded to allow evaluation of end-to-end delay

Results: Next Hop Topology Scenario II

Next Hop Topology Scenario III

Results: Next Hop Topology Scenario III

Next Hop Topology Scenario IV

Results: Next Hop Topology Scenario IV

Conclusions

What's Next

- Throughput per flow and per class
- More scenarios for next hop and hubbing (?)
- Simulations for the random configuration
- Packet size distributions (if needed)
- More scenarios with various traffic generation distributions:
 - Traffic generating nodes move around

What's Next ...

- Bursty traffic
- TCP and UDP apps (and combinations)
 - ftp, http, video-conferencing, voice, video streaming
- Multiple rings?
- Mesh of rings?
- RPR Ring vs. Mesh of switches
- Performance behavior when Link fails

What's Next ...

- Other metrics:
 - ETE packet delay dist and fairness
 - Same analysis for jitter
 - Packet loss (?)
 - Congestion control
 - Fault recovery

Discussions

