

Critical Review of all RPR MAC Proposals

Harmen R. van As, Arben Lila, Guenter Remsak, Jon Schuringa Vienna University of Technology, Austria

RPR MAC Design Goals

- Plug and play
- Link fairness
- SLA support
- High performance

- Optimal performance for 64 stations (128 stations reduced performance)
- Bit rates from 155 Mbit/s up to 10 Gbit/s (and higher)
- Up to 1000 km ringlets
- Single (fault), dual, and multiple ringlets

Central Position of MAC Fairness Control

Chapter 9 will still need major performance studies and intensive debates before text can be included into the draft

RPR MAC Proposals

```
Gandalf (Cisco, Corrigent Systems, Jedai Broadband Networks)
```

Darwin (Cisco, Nortel)

Alladin (Alcatel, Dynarc, Lantern, Luminous, NEC, Nortel, Vitesse)

DVJ (Cypress Semiconductor, University of Oslo)

IKN (Vienna University of Technology)

Required MAC Protocol Properties

Support of:

- Link-fairness
- Service Level Agreements (SLAs)
- Heterogeneous link speeds

Performance properties:

- Control of flow-based source-destination traffic
- No HOL blocking
- Very high network throughput
- Low delays / controlled delays
- No packet losses
- No backpressure
- Transit buffer size at most one or two MTUs
- Bottleneck-link fairness based on source-destination flows
- Adaptivity to traffic dynamics

Basic Structure of Stations

1, 2, 3 buffer versions

Support of Three Priorities

Gandalf / Darwin

DVJ

A0

Α1

reactive proactive

provisioned bandwidth.

bounded latency

unprovisioned or

unused provisioned

Class-A

Class-B

Class-C

High Priority

- Guaranteed bandwidth (provisioned)
- Bounded delay and bounded jitter

Medium Priority

- Committed Access Rate (CAR) for MP (cMP)
- MP Traffic exceeding CAR (eMP) is subject to fairness algorithm control
- Committed bandwidth (provisioned), best effort for excess traffic
- Bounded delay and (loosely) bounded jitter

Low Priority

- No guarantees
- Best effort for bandwidth, delay and jitter

Gandalf / Darwin

Transit buffer (low priority)

- Local scheduling between transmit and transit buffers (high and low)
- Backpressure control on threshold passing in transit buffer
- Informed sources reduce their rates accordingly

Alladin

- Measurement driven
- Bottleneck station-flow fairness

- Each station monitors its output link to measure rates of each source flow
- Periodically, each station calculates a RCF (Rate Control Factor) for its link which is sent upstream to all stations
- Upon arrival of a control packet, the allowed rate for that link is reduced

DVJ

- Control packet with traffic demand circulates for each station
- All other stations modify flow rates in control packet according to bottlenecks
- Upon return, the issuing station obtains the allowed rate for each link

IKN

- Bottleneck flow-fairness
- Demand driven
- Greedy and scheduled access
- Data and control on each ringlet in the same direction
- No backpressure control

- Traffic demand is cyclically advertised to all stations
- All stations locally schedule their traffic volume within current fairness cycle
- Bottleneck flow-fairness per fairness cycle
- Access is greedy for underutilized links, it is scheduled for bottleneck links

Performance Evaluations of RPR MACs

- Up to now only a few performance studies gave useful results
- Complex source models disguise important properties of a MAC
- TCP cannot be used to evaluate a MAC, instead its influence of a MAC of the behavior of TCP connects is important
- Well-understood sources and traffic scenarios are required for MAC evaluations
- Many scenarios are still needed to find weaknesses or to proof robustness against traffic and system parameters
- Web-posted precompiled OPNET scenarios are unfortunately only of limited use
- IKN designed automatic performance evaluation of test scenarios

MAC Transmission Path

- Connection between two stations to be considered as a flexible and dynamic point-to-point link:
 - no packet losses on the medium
 - keep the transit path clean
 - no or only controlled scheduling
- Transit buffers only to be used
 - to avoid packet collisions
 - time-controlled insertion of real-time packets of provisioned traffic

Evaluation Issues

- 1. Simplicity
- 2. Operability
- 3. Testability
- 4. Extendibility
- 5. Scalability
- 6. Traffic dynamics
- 7. Robustness
- 8. Behavior
- 9. Fairness performance (flow or node)
- 10. Throughput performance
- 11. Delay performance
- 12. Capabilities (SLAs, heterogeneous links)

Conclusions

- The MAC is the heart of the IEEE 802.17 Standard
- MACs are very difficult to design and even more to evaluate
- Evaluations are not yet at the state for proper selection
- Many simulations still have to be done before any conscious decision can be made
- Finding of any weaknesses or proofing robustness must be done now, fixes are impropriate and reduces confidence in the standard

MAC performance significantly impacts success story of IEEE 802.17

Critical Review of all RPR MAC Proposals

Back-up Foils

Harmen R. van As, Arben Lila, Guenter Remsak, Jon Schuringa Vienna University of Technology, Austria

Purpose of these Back-up Foils

This evaluation is still incomplete or might not completely right

The comparison is put together as a basis for discussion in the MAC fairness subgroup during the St. Louis meeting, March 11-14, 2002

(1) Simplicity

Protocol simplicity is mainly given by

- number of control packets
- number of parameters
- number of communication types and processes
- procedure of the communication process

Gandalf: - many parameters and constants

Darwin - threshold procedure is rather complex

DVJ: ?

Alladin: - cyclic bottleneck fairness advertisement

- local fairness scheduling

- cyclic demand advertisement

- single control packet

- local bottleneck fairness scheduling

(2) Operability

Protocol operability is mainly given by

- number parameters to be set
- dependency of traffic and configuration parameters
- degree of adaptivity
- required skills for operation (plug and play)

Gandalf: - many parameters to be set,

Darwin - only heuristic knowledge about parameter setting

- strong relationship between parameters and traffic pattern

DVJ: -?

Alladin: - few parameters

IKN: -few parameters, easy to make them adaptive

(3) Testability

Protocol testability is mainly given by

- number of control packets
- number of parameters
- number of communication types and processes
- procedure of the communication process
- behavior model (predictable, stochastic, deterministic)

Gandalf: - difficult (many parameters, stochastic behavior, etc.)

Darwin - how to test proper setting of parameters in all stations?

- how to test behavior

DVJ: - ?

Alladin: -?

- easy (deterministic scheduling, no local properties)

(4) Extendibility

Protocol extendibility is mainly given by

- possibility to include new features
- possibility to cover other topologies (short-cut links, ring-mesh)
- possibility to cover new technologies like WDM

Gandalf:

Darwin

possible

DVJ:

- possible

Alladin:

- possible

IKN:

possible (including WDM medium scheduling)

(5) Scalability

Protocol scalability is mainly given by

- extendibility to ring length, link speeds, node number

Gandalf:

- proper threshold setting required

Darwin

- more?

DVJ:

- probably

Alladin:

- probably

IKN:

- more control packets to split up demand information

(6) Traffic Dynamics

Protocol traffic dynamics is mainly given by

- performance insensitivity to slow or fast traffic dynamics

Gandalf:

Darwin

- fast changes ?

- ?

DVJ:

Alladin: - fast changes ? (measurement driven)

- highly adaptive fast changes (demand advertisement)

(7) Robustness

Protocol robustness is mainly given by

- number of control packets
- number of parameters
- number of parameters
- number of communication types and processes
- procedure of the communication process
- ability to handle failures

Gandalf:

Darwin

many control packets

DVJ: - many control packets

Alladin: - many control packets

- one single control packet

(8) Behavior

Protocol behavior is mainly given by

- degree of predictability
- degree of intrinsic stochastic
- degree of deterministic

Gandalf: - stochastic (high transit buffer occupancy for high throughput)

Darwin

- rather predictable (demand-driven)

Alladin: - rather predictable but also stochastic (measurement-driven)

- predictable and close to deterministic (demand-driven, scheduling)

(9) Fairness Performance

Protocol fairness is mainly given by

- capability to assure controlled and fair access to medium

global fairness (80's)→ link fairness per station → link fairness per station pair

Gandalf: - link bottleneck fairness based on source flows

Darwin - degree of fairness open

DVJ: - link bottleneck fairness based on source flows

- fairness?

Alladin: - link bottleneck fairness based on source flows

degree of fairness to be discussed

- link bottleneck fairness based on source-destination flows

(return to source flow fairness easy)

- theoretical fairness approached

(10) Throughput Performance

Throughput performance is mainly given by

- ability to exploit spatial reuse while preserving throughput fairness

Further studies required

Gandalf: - high but suboptimal throughput

Darwin

DVJ: -?

Alladin: - high but suboptimal throughput

- highest network throughput of all MAC proposals, while

preserving source-destination flow fairness

- theoretically fair throughput flows approached

(11) Delay Performance

Delay performance is mainly given by

- access scheme
- occupancy of intermediate transit buffer

Further studies required

Gandalf: - transmit buffers may strongly transfer time on medium

Darwin

DVJ: -?

Alladin: - low

IKN: - low

(12) Capabilities

Required capabilities

- heterogeneous link speeds
- support of SLAs
- support of high-degree quality circuit emulation

Heterogeneous link speeds

possible when knowledge of link utilization
 Gandalf/Darwin, probably yes, DVJ?, Alladin yes, IKN yes

Support of SLAs

- with source link fairness doubtful for all cases
- with source-destination link fairness: IKN yes

support of high-degree quality of circuit emulation

- Gandalf/Darwin, DVJ, Alladin ??
- with deterministic scheduling and time-controlled transmissions : IKN yes

RPR MAC Comparison

	Gandalf	Darwin	Alladin	DVJ	IKN
1) simplicity					
2) operability					
3) testability					
4) extendibility					
5) scalability					
6) traffic dynamics					
7) robustness					
8) behavior					
9) fairness					
10) throughput					
11) delay					
12) capabilities					