

Fairness Requirements

Harry Peng: hpeng @nortelnetworks.com

Robin Olssen: robino @vitesse.dk

Stuart Robinson: Stuart_Robinson @pmc-sierra.com

Nader Vijeh: nader @lanterncom.com

Agenda

- Summary of carrier requirements presented
- Design Implications
 - Interrelationship Digraph
- Conclusions

Previous Presentation from Carriers and Providers

Sprint

- -Size
 - Entire network size 500 nodes
 - Ring 30+ nodes on OC-12 Ring

–Servies

- 2 priorities
 - Low delay and jitter, guaranteed BW
 - Bounded delay
 - At present only one class of traffic: BE
- Scalable to higher speed interfaces

-OA&M

- Operational: Facilitate upgrade to increase customer BW requests
- Troubleshooting requirement: like SONET OA&M
- Carrier grade
 - Protection required:
 - High availability

Carrier Requirements (Cont'd)

MCI

- Size
 - 2 stations on access rings
 - Potential to add more stations on the ring

Services

- Virtual Private Network
- Virtual lease line model
- Security
- Future services

– OA&M

- Resiliency
- Scalable services without fork lifting
- <1% preemptable traffic

Carrier Requirements (Cont'd)

BellSouth

-Ring Size

- Metro Applications:
- Access rings: OC-3-OC-48, IOF rings: OC-12-OC-192
- <6 node
 6-12 nodes, span 10-15km max
- Ring size 50 km

-Services

- Multiple QoS support
- Mixed with guaranteed BW&latency
- Low priority burstable and weighted distributed
- Best effort: Statistical multiplexing
- Protection options

-OA&M requirements

- SONET like OA&M functions
- Manual switch
- Source routing

Carrier Requirements (Cont'd)

Global Crossing

- Size:
 - Metro ethernet services (ethernet distance extension to the WAN)
 - 150 km ring circumference, 40km span

Services

- Ethernnet services: Transparent LAN. Virtual private line.
- Customer separation AND maintaining customer VLAN: <u>Service label</u>
- weighted fairness with BW allocation due different aggregation point on a ring for different burstable customers
- Flexible architecture for new revenue generating: BW, delay

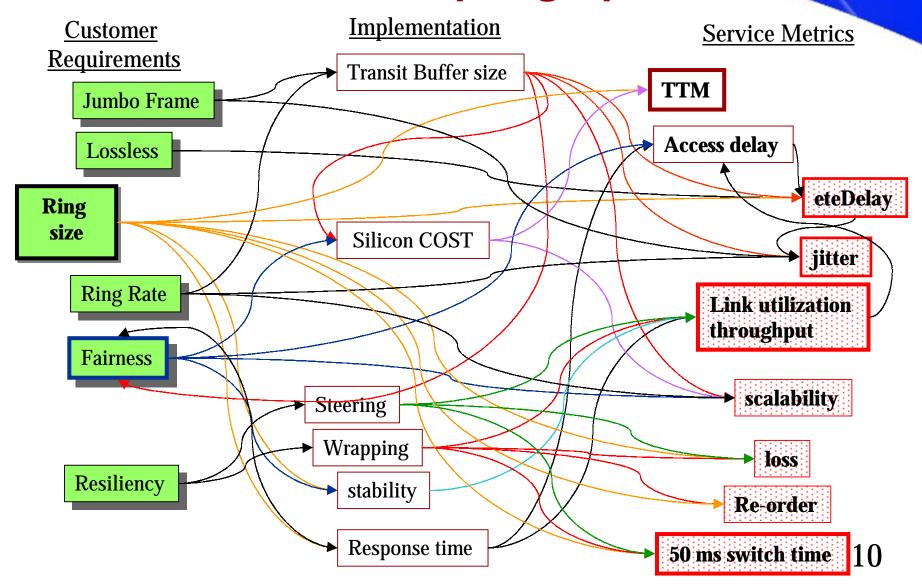
- OA&M

- Symetrical and asymetrical contracts
- Operation monitoring to meet SLA:unicast-Source and Destination
- Fairness needed to have no impact by network loading
- 50 ms protection
- Statistics
- SONET like OA&M functions

Carrier Requirements (Cont'd) SBC

- Size:
 - metro, access and inter-office (WAN)
 - Multi-node ring
 - Reduce equipment: port consolidation
 - Shared media: fairness scheme
 - Scalable WAN ports: SONET, DWDM, GbE
 - GFP
 - Reduce equipment cost
- Services
 - Service for variable BW
 - Service for circuit emulation
- OA&M
 - Carrier grade
 - Protection
 - 99.999 availability SONET, DWDM, GbE
 Reduces circuit administration
- Interoperability
 - Functional supplier interchangeability
 - Not just element interchangeability
 - Not just inter-working

Bell Canada


- Size
 - MAN:
 - Metro Core ring: 8 nodes, 170 km, max span 15 km
 - Access ring: 2-6 nodes, 20-50 km
- Services
 - Carrier class transparent LAN service
 - Ethernet technology: reduce operation cost
 - VPN
 - Customer separation
 - Scalable to thousand to millions of VPN
 - Lower cost higher BW
 - Higher BW demand: GE to customer
 - Support for multicast
 - Require Low latency transport
- OA&M
 - Carrier Grade
 - Reliability
 - Resiliency
 - Scalable and flexible lowest cost per managed bit

Requirement Summary

- Size
 - Acess
 - Metro
 - WAN
- Services Metrics
 - BW, Delay, and Loss
 - Impact RPR:
 - Oversubscribe, Congestion management/avoidance,
 - Buffering: Ingress and egress buffers, Tandem buffers
- SLA
 - BW
 - CIR: need traffic engineering
 - Weighted fairness for class
 - Differentiated service/ priorities
 - delay and jitter bound
 - Five 9 availability
 - Protection
 - Non preemptable traffic
 - New Preemptable service: No protection on failure.
- Need tracability for all the services: simple OA&M framework

RPR Interrelationship Digraph

Implications

- Must limit the scope of application
 - Ring circumference
 - number of stations
 - Doe not limit to Metro Ring e.g.
 - NHL all star play off, Cybercast cross USA but limited to 4 nodes.
 - Ring size 6000miles/9700km
 - Metro Ring size of the future is 1000 km
- Have to ask "Does the implementation meet customer requirements?"
 - Link utilization
 - Low jitter
 - Bounded delay
 - Reduce complexity
 - scalability
- Reduce Operation Cost
 - Reduce operation complexity
 - Reduce equipment cost

Conclusions: To get to the right Requirements

Use Carrier requirements to define a set metric for RPR specific Requirements (shall) and objective (should)

- Define the reference network
 - TTM is important, limit the scope: RING SIZE
 - Understand competing technologies
- Motion: RPR standard to focus on realistic Ring size for TTM
 - Max stations on a RING: 64 (max ~30)
 - Ring circumference: 2000 km (<200km Metro rings)
 - Ring SPAN: PHY dependent optics cost e.g. LX
 - Scalable Ring Speed with future PHY
- Motion: Fairness scheme supports multiple Tos and BW guarantee

Conclusions: To get to the right Requirements

 Metrics (Customer Requirements) 	Yes	No
 Fairness: must solve media contention 		
Support BW guaranteed service	-	-
 Support weighted fairness for different ingress demand 	-	-
 Support multiple CoS based on parameters: BW, delay, jitter 	-	-
Protection		
 Support protected and un-protected services 	-	-
 Protection switch time (50ms) 	-	-
 Operation Simplicity 		
 Minimize operation cost: training, debugging 	-	-
Facilitate network engineering	-	-
 Scalable 		
 From 155M to 10G, 	-	-
 40G and beyond 	-	-
- Feasibility, cost, complexity	-	-
 Support customer separation 		

- Use the Table to decide and ask "is the design adequate?"
- Understand the interrelationship to make good trade-off

Questions and Answers

References

- Previous Carrier/Providers presentations
 - http://www.ieee802.org/17/

Outages

- http://www.zdnet.com/intweek/stories/news/0%2C4164%2C4 06174%2C00.html

NHL

- http://www.internetworld.com/040101/04.01.01internettech1.jsp
- http://www.nortelnetworks.com/products/library/collateral/56010.43-03-01.pdf