Entertainment Video over RPR

Luis A. Rovira

Lr_evor_01.pdf

CATV Architectures

Projected Video on Demand (VOD) Traffic per Hub

```
20K HP per Hub
x 0.75 Cable Penetration
x 0.5 Digital Subscribers?
x 0.1 Simultaneous Users??

750 streams
x 3.5 Mbps/stream

2.6 Gbps
```

- Typical 3 hubs/ring due to AM fiber
- But... VOD servers are going into hubs due to inadequate transport
 - Results in duplication of content and higher storage costs
- Headend- PVR traffic could greatly exceed this

CATV Systems

• Given the need for CATV to transport huge amounts of packets to CATV hubs, what are some of the issues on how to do this?

MPEG is 3 Things

- International standard* that includes 3 categories:
 - Video and Audio compression (*-2,*-3)

Enables bit rate reduction for a program from >100 Mbps to a few Mbps

Systems/Transport (*-1)

Defines 188 byte packet used for virtually all satellite and CATV transmission of entertainment-quality digital video/audio

Signaling (*-6)

Digital Storage Media Command and Control (DSM-CC) enables control of dynamic broadcast and interactive "sessions" for programs and data.

Also defines broadcast "data carousels" that can provide data and files to diskless set-tops.

* ISO/IEC 13818

MPEG Transport

MPEG Transport Synchronization

- In MPEG Transport the receiver is locked to the transmitter using PCRs
 - Source for frame, line rates, chroma subcarrier
 - Permits small buffers and quick channel changes
 - Prevents freeze-frames due to buffer overflow/underflow
- •Time stamps based on absolute PCRs are used to:
 - Decode content at proper time (DTS)
 - Present content at proper time (PTS)
 - Assures lip-sync
- These things are in hardware in all entertainmentquality settops

Packetization Jitter

3 Mbps MPEG Transport Stream

- In this example, the first MPEG transport packet is delayed half a millisecond for each subsequent packet in the same frame
- In a 3 packet frame the first packet may be jittered by 1 millisecond
- Most settops want <500 microseconds
- Modulators often dejitter packets

Delay

- Interactive video delays not as critical as telephony
 - e.g. commercial surfing, camera angles, IM
 - Movies
 - Ordering
 - Trick Modes Pause/FF/RW
- Telephony/Videophone on cable
 - Delay requirements similar to POTs

CATV Systems

- Similar to carriers in
 - Wanting more administrative control
 - Needing traffic engineering
 - Deterministic routing
- Different from carrier in that
 - Know what the content is
 - Have their own content to sell
 - Don't want to be just a pipe
 - Huge emphasis on costs
 - 5 Gbps pipe at consumer prices
- In CATV systems
 - Efficiency is very important
 - Buy separate "stat muxers" to squeeze in 20% more video

Thumbs Up

- MPLS
 - Enables MPEG "virtual circuits"
 - Short label can denote meaning beyond its bits
 - Efficiency
- CR-LDP
 - Simple
 - Traffic Engineering
 - Administrative control
 - Explicit routing to Layer 3 routing continuum
- Diff Serv
- Resilience
 - Not spoiled on 50 ms. 100 ms might be fine.
- One-byte node addresses

Thumbs Down

- Long Headers
 - Inefficiency
- Misordered packets during normal operation
 - Tolerable during protection or recovery
- SONET "quantizing"
- RED on MPEG streams
- Low bandwidth rings

