

Global Crossing RPR Requirements

Tony Lau Director, Global Network Architecture Global Crossing

Agenda

- Global Crossing Goals
- Metro Network architecture
- Global Ethernet Services
- SLA
- Implications on RPR
- Conclusion

Global Crossing Goals

- Data services in 50+ major metro cities worldwide
- A metro network that handles both legacy and data services
 - Basic legacy and data services
 - High margin value added services
- Maximize ROI
 - More customers per network
 - More services per customer

Metro Network Architecture

- Ring based architecture in metro networks
 - Max ring size ~100 km
 - Max distance between nodes up to ~40 km
 - Number of nodes < 15
 - High-speed rings (2.5Gbps and 10Gbps)
- SONET for TDM based services
- WDM for Lambda based services
- RPR for Ethernet based services
- Guiding Principles
 - Metro network remain layer 1 and 2 for simplicity

Global Ethernet Services

- Ethernet Services within a Metro Area or between Metro Areas on a global basis
 - High speed inter-connects for service providers
 - Ethernet services for large enterprises
- Transparent LAN service
 - Point to point virtual private line
- Multipoint VLAN service
 - 802.1q VLAN

Service Level Agreement

- An SLA defines a service
 - Reliability
 - Responsiveness
 - Performance
- SLA is enforced on a per customer basis
 - Pay penalties to customers if SLA is not met
 - A customer may have more than one service, each with its own SLA
 - Service level should be maintained regardless of network loading and other flows within the network

Service Level Agreement

- Performance parameter guarantees
 - Availability
 - Simple and fast restoration ~50 ms
 - Bandwidth
 - Committed information rate (in unit of Mbps)
 - Delay
 - Tight bound (<10 ms in a RPR)
 - Loose bound
 - No bound
 - Jitter
 - Need to be bound for high grade service level (<1ms)

Security Considerations

- Majority of data services are private lines or virtual circuit based
 - Customers are comfortable with logical segregation
- GX would like to offer customers traffic separation and security
 - Adopt Frame Relay PVC model (traffic segregated by DLCIs) as opposed to the IP VPN model (no logical flow separation)

FCAP Considerations

- For RPR to be successful, it needs to offer robust FCAP features
 - PM
 - CRC error
 - Packet dropped
 - Alarms
 - Threshold Crossing Alarms
 - SLA Monitoring

Enforcing SLA

- A philosophy is NOT to admit traffic not conforming to traffic contract
 - Traffic policing at ingress of network
 - Non-conforming traffic may be admitted but SLA applies only to conforming traffic
 - Non-conforming traffic may be discarded at ingress due to network conditions
 - Customers billed based on SLA and/or usage
 - SLA verification through monitoring and reporting
 - SLA violations by carrier have financial implications
 - Need some mechanism to clearly delineate individual customers

Implications for RPR

- High service availability
 - Fast service restoration (less than 50 ms) for platinum customer who pays for it
 - Per SLA protection
 - Simple and almost UPSR-like behavior
 - Source steering
- Bound latency and jitter
 - Latency < 10 ms & jitter < 1 ms within one RPR
 - Limit maximum frame size
 - High speed ring line rate preferably at 10 Gbps
- QoS per service per customer
 - Per flow QoS (based on SLA)
 - Performance monitoring for each customer's SLA
 - Need some sort of tagging to delineate individual customer

Implications for RPR

- Customer traffic separation
 - Some sort of tagging to identify a customer's traffic
- Guaranteed Bandwidth
 - CIR like guarantee
- Maximize ring utilization
 - Optimize bandwidth utilization of each link on the ring
- Layer 2 RPR for simplicity

Conclusion

 Global Crossing is looking for a cost effective RPR MAN technology that is optimized for data, and can be used to offer carrier-class Ethernet services as an alternative to Frame Relay service and maybe even private line service via circuit emulation in the future

