

Bridging on 802.17 LAN with 802.1D/Q Compliance

May 2002

mh_BAH_Bridge_8021DQ_7.2.pdf

• Satisfy the compatibility requirements as specified in the 5 Criteria for 802.17

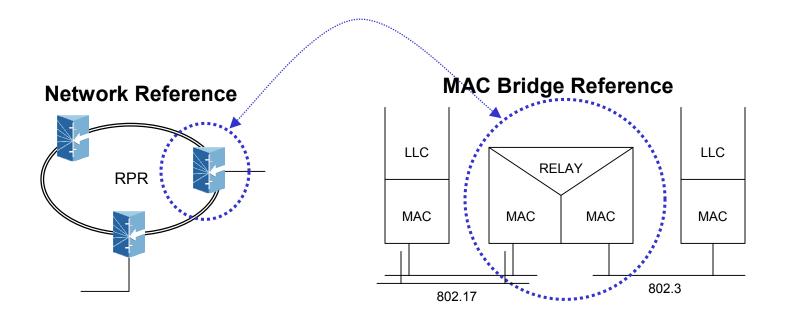
"The Resilient Packet Ring standard will be compatible with the relevant portions of 802.1D, 802.1Q and 802.1f"

Terminology

- Unknown/Remote Address
 - An address that is not found on the Ring
 - A remote address of the Ring
 - An address that is not found in the Topology Image of any station
- Known/Local Address
 - An address that can be found on the Ring
 - A local address of the Ring
 - An address that is found in the Topology Image of any station
- Lowest Cost Path
 - Typically a Ringlet with the shortest hop count to a particular destination
 - May be extended to include BW metrics in cost calculations
- Flood
 - A transmission mechanism that ensures all stations see a transmitted packet once, without duplication

- 1. Bridges operate in a Promiscuous mode
- 2. 802.17 MAC performs Symmetric transmission of the frames (e.g., reception on CW and transmission on CCW) for a given source and destination RPR station pair
- 3. A flooding indicator in the frame is required to ensure that *flooded* frames are indeed seen by every station on the Ring

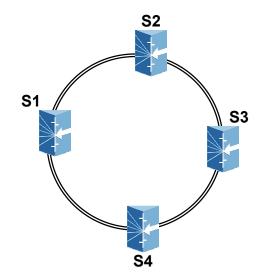
- Spatial Re-Use only applies to communications between end stations (e.g., Routers, Hosts, Servers, etc.) on the Ring
- 2. Any communication to/from a 802.1D/Q Bridge will not have any Spatial Re-Use feature
 - 802.1D/Q devices (e.g., Bridges) treat the Ring as a broadcast media
 - As long as a MAC can be operated as a broadcast medium, STP, GVRP will function properly


The spatial reuse features to support 802.1D/Q Bridging will be covered by the "Bridging & Spatial Re-Use" sub-team presentations. This solution does not preclude evolution to the "Bridging & Spatial Re-use" proposal. It should be forward compatible.

802.17 MAC in a Bridge

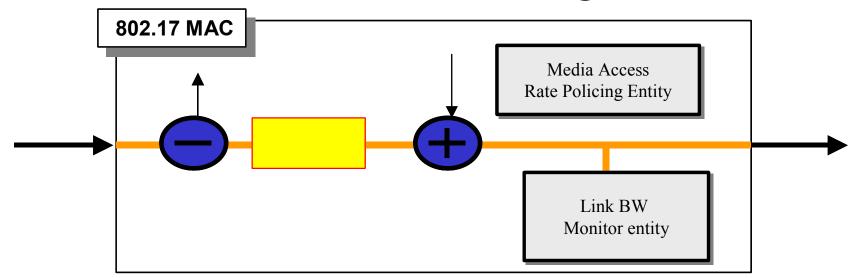
• The station on the RPR is a transparent bridge and the ring is the shared medium

MAC Requirements for Compatibility With 802.1D/Q


- 1. MAC must support a promiscuous mode so that it allows the Relay Entity to process packets not destined to it
- 2. Must handle frames with all types of addresses *—Remote* unicast, *local* unicast, multicast, broadcast
- 3. Must be able to communicate with the Bridge Protocol Entity via the LLC sublayer
- Must be able to support the Internal Sublayer Service (ISS) and the Extended ISS (E-ISS) defined in 802.1D and 802.1Q respectively

802.17 MAC Ringlet Selection

- Under normal operations, MAC takes lowest cost path (e.g., chooses Ringlet with lowest hop count) to destination Station
 - Topology Discovery protocol provides the MAC with hop count and direction (I.e., Ringlet) information associated with all Stations on the Ring


S1 Station Topology Image					
_		CCW	CW		
Dest Station	Primary	TTL	TTL		
S2	CW	3	1		
S3	CW or CCW	2	2		
S4	CCW	1	3		

		CCW	CW
Dest Station	Primary	TTL	TTL
S1	CW	3	1
S2	CW or CCW	2	2
S3	CCW	1	3

Operation of an 802.17 MAC in a 802.1D/Q Bridge

- The MAC must operate in promiscuous mode
- All frames are "Replicated/Copied"
 - The frame is "Dropped" (I.e., passed to appropriate MAC Client)
 - The frame is forwarded downstream if MAC stripping rules don't strip (e.g., TTL permits, not destination address, etc.)

Reception of Frames by a 802.17 MAC

- Packet gets stripped off of Ring as per RPR Draft MAC reception rule (e.g., TTL, destination address match, etc.) with the following exception
 - If flooding indicator set, then DA stripping is not enforced

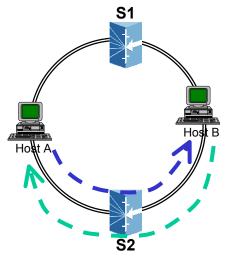
If RPR Frame structure support Station Identifiers, then flooded packets would be dispatched using a DSID of broadcast

No MAC reception rules changes would be required

Transmission of Frames by a 802.17 MAC (non-Bridge)

Assumption: 802.17 MAC is doing Ringlet Selection

- Packets with remote addresses are *flooded* on the ring
- Packet with multicast or broadcast addresses are broadcast over the ring
- Packets with local unicast address are sent directly to destination station



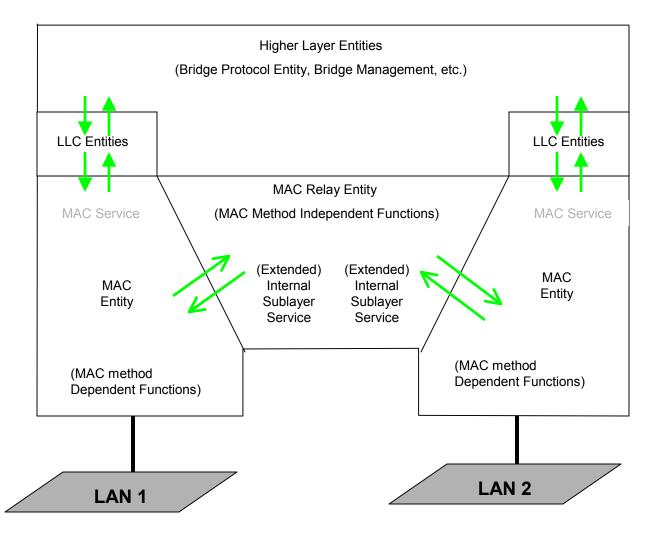
Transmission of Frames by a 802.17 MAC (non-Bridge)

Assumption: 802.17 MAC is doing Ringlet Selection

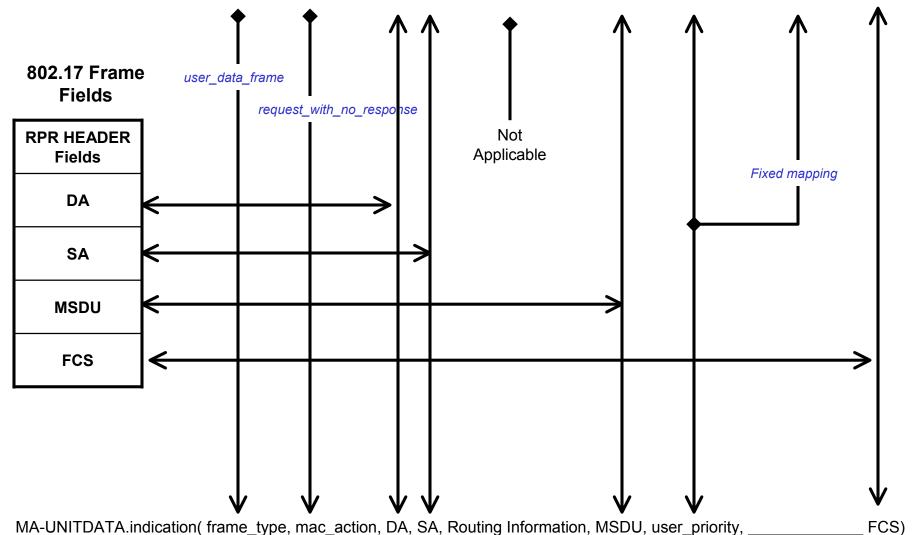
- Local address terminations between {source, destination} station pair where there is equal cost associated with both Ringlets should follow symmetric paths
 - Example: Station with higher MAC address will take Ringlet_0, and Station with the lower MAC address will take Ringlet_1

Transmission of Frames by a 802.17 MAC supporting a Bridge

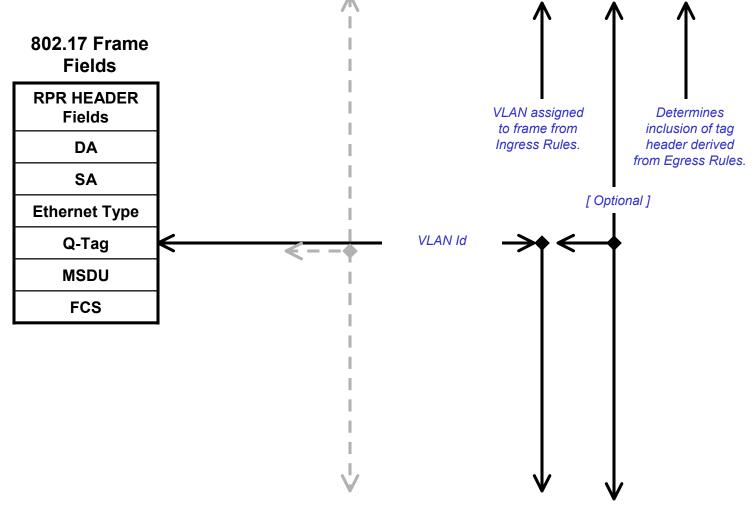
Assumption: 802.17 MAC is doing Ringlet Selection


- All packets are *flooded* on the ring independent of
 - Unicast (remote and local), multicast, or broadcast addresses are *flooded*
 - Flooding indicator in RPR Frame is set

If RPR Frame structure support Station Identifiers, then flooded packets would be dispatched using a DSID of broadcast



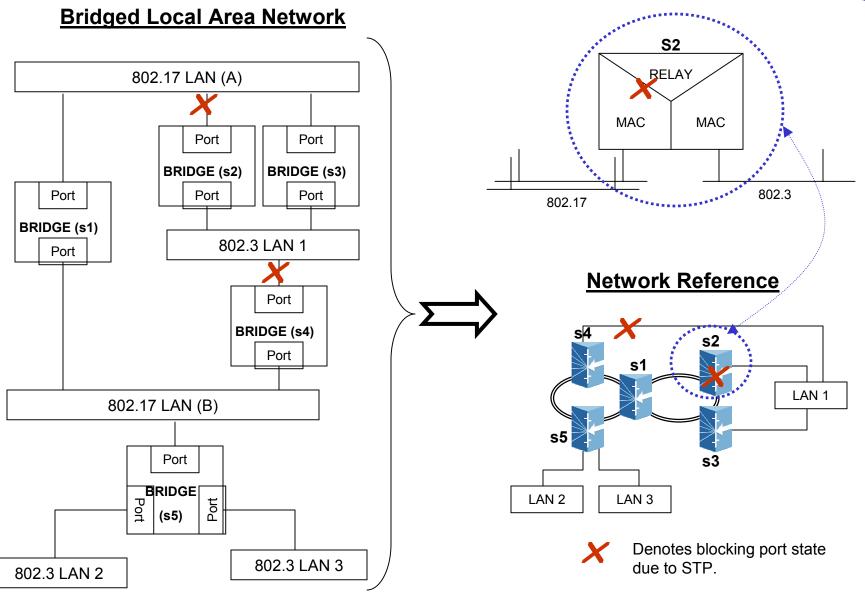
Supporting ISS and E-ISS



MA-UNITDATA.request(frame_type, mac_action, DA, SA, Routing Information, MSDU, user_priority, access_priority, FCS)

E-ISS Service Mappings for 802.17 MAC

EM-UNITDATA.request(MA-UNITDATA.request.parameters, cfi, vlan_class, rif_info, include_tag)



EM-UNITDATA.indication(MA-UNITDATA.indication.parameters, cfi, vlan_id, rif_info)

STP Interactions With 802.17

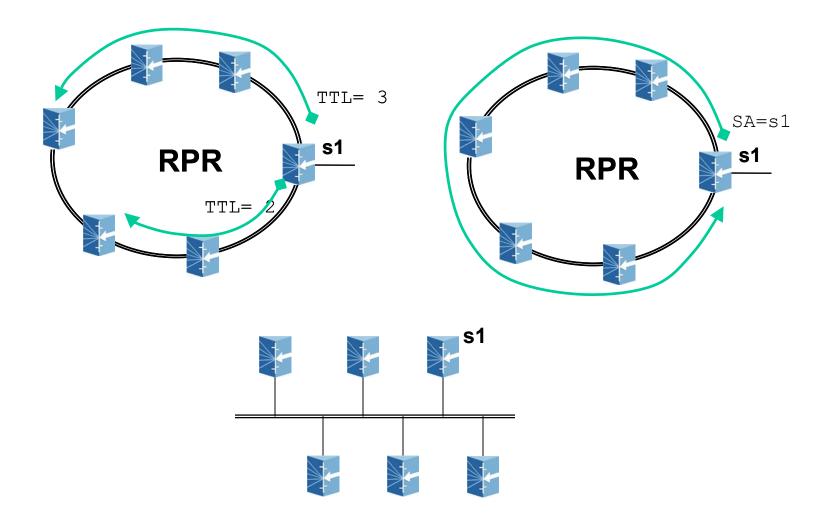
Observations

- Transparent Bridge Stations
 - Persistently flood packets over the Ring.
 - No Spatial Re-use achieved for Transparent Bridges
- Non-Bridge Stations (e.g., Hosts, Servers, Routers, etc.)
 - Flood packets over the Ring when terminating to remote addresses
 - Transmits packets directly to Ring station when terminating to local addresses
 - Spatial Re-Use is achieved on the Ring for local terminations

Other Observations

- Supported by simple TTL scoping flooding technique
- Supported with Frame Structure described in current RPR Draft (V2.0) with the addition of a flooding indicator bit
- Supported by Frame Structures that support Station Identifiers
- Supported by Flooding techniques offering increased robustness
- Does not preclude graceful evolution to a Bridging & Spatial Re-use solution

- 802.17 MAC demonstrates compliance to 802.1D and 802.1Q as required by the PAR and 5 Criteria
 - ISS and E-ISS conforms to 802.1D/Q specification
 - Integrity of Spanning Tree Algorithm/protocol is maintained



BACK UP

Example Flooding Techniques

