

1

Topology data base - special cases

Leon Bruckman

lbr_toposc_01.ppt

5/19/03

Detecting duplicate MAC address – Scenario 1

			`
1	macAddressS2	info	
1	macAddressS3	info	
0	macAddressS1	info	ringlet1
1	macAddressS5	info	finglett
1	macAddressS6	info	
0	macAddressS1	info	$\left \right\rangle$
1	macAddressS2	info	
1	macAddressS3	info	
0	macAddressS1	info	ringlet0
1	macAddressS5	info	
1	macAddressS6	info	J

1	macAddressS3	info	
0			
1	macAddressS5	info	
1	macAddressS6	info	/ /ringlet1
0	macAddressS1	info	
1	macAddressS2	info	
1	macAddressS3	info	$ \langle$
0	macAddressS1	info	
1	macAddressS5	info	
1	macAddressS6	info	Finglet
0			
1	macAddressS2	info	J
1	macAddressS3	info	

S1a

S3

MAC duplication detection Scenario 1

- Duplicated stations
 - No "holes" in topology
 - See themselves in the "middle" of their topology data base in both ringlets
 - Do not see themselves as the farthest station in the topology data base.
 Looks like open loop, but..
 - Same stations in ringlet0 and ringlet1 and no protection alarms
 - Indication: I am duplicated
 - Action: "Shut-up" or passthrough

MAC duplication detection Scenario 1

- Other station
 - See a "hole" in the topology (since the duplicating stations "steal" one another's protection frames)
 - Which is the duplicated station ? The one that complies with:
 - *ringlet0hops.duplicatedStation* + *ringlet1hops.duplicatedStation* < *stationsInRing*
 - Is the "hole" created because a station is duplicated, or is there a silent station ? Duplicated station hole if:
 - ringlet0hops.duplicatedStation + ringlet1hops.hole = stationsInRing
 - *ringlet1hops.duplicatedStation* + *ringlet0hops.hole* = *stationsInRing*
 - TLV message can be used to detect which is the duplicated station
 - *Indication*: Station Sn is duplicated in this ring
 - Action: Don't talk with duplicated stations

Detecting duplicate MAC address – Scenario 2

0	macAddressS2	info	
1	macAddressS4	info	
1	macAddressS5	info	Finglet
1	macAddressS1	info	
0	macAddressS2	info	$\left \right\rangle$
0	macAddressS2	info	
1	macAddressS4	info	rinalet0
1	macAddressS5	info	ingioto
1	macAddressS1	info	J
			-

1	macAddressS5	info	
1	macAddressS1	info	
0			
0	macAddressS2	info	Finglet i
1	macAddressS4	info	
1	macAddressS5	info	$ \langle \rangle$
0	macAddressS1	info	
1	macAddressS2	info	}rinalet0
0			
1	macAddressS4	info	
1	macAddressS5	info	

S2a

S5

Detecting duplicate MAC address – Scenario 3

5/19/03

MAC duplication detection Scenarios 2, 3

- Duplicated stations
 - No "holes" in topology
 - See themselves in the "middle" of their topology data base in one ringlet and..
 - See themselves as the farthest station in the topology data base in the other ringlet only. Looks like single link failure, but..
 - Same stations in ringlet0 and ringlet1 and no protection alarms
 - Indication: I am duplicated
 - Action: "Shut-up" or passthrough

MAC duplication detection Scenarios 2, 3

- Other station
 - See a "hole" in the topology (since the duplicating stations "steal" one another's protection frames)
 - Which is the duplicated station ? The one that complies with:
 - *ringlet0hops.duplicatedStation* + *ringlet1hops.duplicatedStation* < *stationsInRing*
 - Is the "hole" created because a station is duplicated, or is there a silent station ? Duplicated station hole if:
 - ringlet0hops.duplicatedStation + ringlet1hops.hole = stationsInRing
 - ringlet1hops.duplicatedStation + ringlet0hops.hole = stationsInRing
 - TLV message can be used to detect which is the duplicated station
 - *Indication*: Station Sn is duplicated in this ring
 - Action: Don't talk with duplicated stations

Detecting duplicate MAC address – Scenario 4

1	macAddressS1	info	Fringlet1
1	macAddressS1	info	
1	macAddressS1	info	}ringlet0

S1a

S1a

MAC duplication detection Scenario 4

- Duplicated stations
 - Stations are not able to differentiate between 4a and 4b.
 - Same will happen if there are N stations in a ring all with the same address
 - The ring has no real value anyway
 - *Indication*: I am alone.
 - **Action**: "Shut-up" or passthrough

Conclusions "duplicated MAC" - loop

- Fault detection:
 - No alarms
 - Duplicated station sees itself in the middle of one ringlet and no in the edge
 - Other stations see "holes" in the topology data base
 - If all stations have the same MAC address the result emulates a single station in the ring
- Actions:
 - Declare fault
 - Duplicated station stops communication
 - Other station invalidate duplicated stations
 - Stations see different topologies, no conversion to a single ring view No strict order traffic allowed ?

Too many stations

- For the too many station scenarios we will assume *ttl* is 2 bits
 - MAX_STATIONS = 3
- Conclusions can be extended for the "real" *ttl* (8 bits)
- Only the loop case is presented, the edge case should be analyzed as well

Too many stations – Scenario 1

S1

S3

Too many stations Scenario 1

- Complete topology no holes
- Number of different stations in topology = MAX_STATIONS + 1
- Do not see themselves as the farthest station in the topology data base. Looks like open loop, but no protection alarms
- Indication: Too many stations
- Action: Operate normally

Too many stations – Scenario 2

Too many stations Scenario 2

- Complete topology no holes
- Some stations appear in both ringlets, some don't
- Number of different stations in topology = MAX_STATIONS + 3
- Do not see themselves as the farthest station in the topology data base. Looks like open loop, but no protection alarms
- Indication: Too many stations
- Action: Communicate with each station according to the ringlet in which it appears as valid

Too many stations – Scenario 3

Too many stations Scenario 3

- Complete topology no holes
- Different stations in each ringlet
- Number of different stations in topology = MAX_STATIONS + 4
- Do not see themselves as the farthest station in the topology data base. Looks like open loop, but no protection alarms
- Indication: Too many stations
- Action: Communicate with each station according to the ringlet in which it appears as valid

Conclusions "too many stations" - loop

- Fault detection:
 - No alarms
 - Station does not see itself at the farthest in any ringlet
 - Number of stations > MAX_STATIONS
- Actions:
 - Declare fault
 - Continue to communicate with stations according to their validity in the topology data base.
 - Stations see different topologies, no conversion to a single ring view No strict order traffic allowed ?

Going into passthrough – Scenario 1 (Stable)

Going into passthrough – Scenario 1 (S6 passthrough)

1	macAddressS1	info	
1	macAddressS2	info	
1	macAddressS3	info	ringlet1
1	macAddressS1	info	{
1	macAddressS2	info	∠rinalet0
1	macAddressS3	info	
1	macAddressS1	info	

S1

21

Going into passthrough – Scenario 1 (S6 message)

1	macAddressS3	info	
0			
0	macAddressS3	info	_
1	macAddressS2	info]
0	macAddressS3	info	≻ringlet1
1	macAddressS1	info	4
1	macAddressS2	info	rinalet0
0	macAddressS3	info	J
1	macAddressS1	info	

1 0 0 1 1 0 1 0 1	macAddressS3 macAddressS3 macAddressS3 macAddressS2 macAddressS3 macAddressS1 macAddressS2 macAddressS2 macAddressS2 macAddressS3 macAddressS3	info info info info info info info info	}ringlet1 }ringlet0
0 1 0	macAddressS1 macAddressS2 macAddressS3	info info info	ringlet0
1	macAddressS1	info	

S1

S1

Going into passthrough scenario 9

- Figure 1a
 - Stable configuration no passthrough, small ring (RTT very low, small number of stations)
- Figure 1b
 - S3 message reaches S1, no problem detected
 - S3 enters passthrough, so its message will not be stripped until TTL expires
- Figure 1c
 - S1 receives stale S3 message with hops count not as expected
 - S1 assumes that there are two stations that went out of passthrough
- Figures 1d, 1e
 - S1 assumes that two new stations go out of passthrough every time it sees S3 message !
- To overcome this scenario we need to indicate that the message is stale
 - Use the toggle flag
 - Transmitter toggles flag every message
 - Receiver ignores messages with bit not toggled

5/19/03

Conclusions "going into passthrough" - loop

- Stale TP frames may cause damage for long periods for passthrough stations
- Need indication that TP frame is stale to ignore it
 - Toggle bit does the job

Summary

- There are several fault scenarios that impact the topology "view"
 - Scenarios should be described in draft
 - Use the presented scenarios, and add more if required
- Define how alarms are declared/cleared
 - Comments filed against D2.2
- Define strict order traffic behavior during stable fault conditions
 - Different stations have a different ring topology view