

2 Gigabit PacketPHY

Phílíp Kruzínskí 15 May 2003

pk_2GPacketPHY_01

Background

- 1G and 10G PacketPHY based on industry standard 8B/10B Ethernet Phys
- 1G Ethernet Phys are based on Fibre Channel technology
- SONET/SDH Reconciliation Layers support bandwidth increases in multiples of 4
- Need for better Bandwidth granularity options for the PacketPHY

WDM Efficiency

- Most widely deployed WDM Lambda is 2.5G
- 1G PacketPHY uses less than ½ of available transport BW

2.125 Gb/s PacketPHY

- Use Fibre Channel 2.125Gb/s technology
 - SERDES
 - Fiber Optic Components
 - Coax & twisted pair not applicable to RPR
- 8B/10B Coding
- Fibre Channel specification defines Interface Requirements ANSI INCITS 352-2002 FC-0
- 10 Bit non-encoded interface defined for the Phy per ANSI T11.2 FC-HSPI

Physical Reconciliation Layer

- 8B/10B Encoder Adaptation Layer
 - Data Encoding
 - Control Characters Insertion
 - Start and End Packet Frame Alignment
- Use same control characters set as PRS-1
- Interface
 - ANSI T11.2 FC-HSPI for 10B Encoder External
 - XGMII for embedded 8B/10B Encoder
 - Multi-rate / Multi-protocol Phys

RPR RS for 2 Gigabit PacketPHY

Conclusion

- Current PacketPHY bandwidth rates have coarse granularity
- Industry Technology supports other Packet transport rates besides 1G and 10G
- Providing more bandwidth granularity for PacketPHY which is comparable to SONET/SDH
- Compatible with existing Optical solution
- Commercial available SERDES and Fiber Optics support additional rate

