

RPR Physical Layer Proposal

Italo Busi, Alcatel (Presenter)

Rhett Brikovskis, Lantern (Presenter)

Jason Fan, Luminous Henry Hsiaw, NEC Harry Peng, Nortel Angela Faber, Telcordia Robin Olsson, Vitesse Steven Wood, Cisco

Overview

- Objectives
- Layer Diagram
- RPR P-SAP Interface
- Ethernet RS and PHYs
- SONET/SDH RS and PHYs
 - GFP
 - PoS
- Summary

- Present a uniform layer model view of SONET and Ethernet PHYs for RPR.
- Define a single MAC-PHY interface interface common to all physical layer implementations.
- Define a family of Reconciliation Sublayers to adapt the logical MAC-PHY interface to SONET and Ethernet PHYs, using industry-standard electrical interfaces.
- Describe the mapping of the logical frames at the MAC-PHY interface to physical frames compatible with standard SONET and Ethernet PHYs.

Layer Diagram – RPR PHYs

RPR P-SAP (MAC-PHY) Interface

- Define a logical P-SAP interface between the RS (PHY) and the MAC, common to all PHY implementations.
- The interface is defined as a set of service primitives:
 - PHY_DATA.request
 - PHY_DATA.indicate
 - PHY_DATA_VALID.indicate
 - PHY_LINK_OK.indicate
 - PHY_READY.indicate
- The interface does not operate at a constant data rate.
 - The P-SAP primitives define the transfer of whole frames, fields, and other parameters.
 - Some PHY specific fields are inserted by RS (such as IPG for Ethernet).

What is the RPR P-SAP?

- The P-SAP is a <u>logical</u> interface between the MAC and PHY layers, for the purpose of describing the interaction between these layers in the standard.
- The P-SAP is a set of logical primitives.
- The P-SAP does <u>not</u> define an electrical interface. There are no signals specified that correspond to the P-SAP interface.
- The P-SAP is <u>not</u> a compliance point. The existence and operation of the P-SAP cannot be verified or measured.

RPR P-SAP Service Primitives

• The RPR P-SAP service primitives:

- PHY_DATA.request(OUTPUT_FRAME, length)
 Defines the transfer of a frame from the MAC to the RS.
 OUTPUT_FRAME={frame, NO_FRAME}
 The length parameter is an optional field required only for the GFP RS sublayer

 PHY_DATA.indicate(INPUT_FRAME, length)
 Defines the transfer of a frame from the RS to the MAC.
 INPUT_FRAME={frame}
 The length parameter is an optional field required only for the GFP RS sublayer

 PHY_DATA.indicate(INPUT_FRAME, length)
 Defines the transfer of a frame from the RS to the MAC.
 INPUT_FRAME={frame}
 The length parameter is an optional field required only for the GFP RS sublayer

 PHY_DATA_VALID.indicate(DATA_VALID_STATUS)
 Indicates whether the parameter of PHY_DATA.indicate contains valid data.
 DATA_VALID_STATUS={VALID, NOT_VALID}

 PHY_LINK_STATUS.indicate(LINK_STATUS)
 - Indicates whether the PHY indicates that the link is OK. LINK_STATUS={OK, FAIL, DEGRADE}
- PHY_READY.indicate(READY_STATUS)
 Indicates whether the PHY is ready to accept a new MAC frame.
 READY_STATUS={READY, NOT_READY}

Ethernet RS and PHYs

- Define a 10 GbE Reconciliation Sublayer (RS) for RPR to map the RPR P-SAP primitives to the P802.3ae PHYs and interfaces.
- Other than the RS, support the P802.3ae Physical Layer interfaces and sublayers with no changes.
- Support all seven LAN and WAN PHYs specified by P802.3ae.
- This proposal specifically addresses 10 GbE, but is intended to be extensible to other Ethernet speeds.

Ethernet RS and PHYs - Layer Diagram

LLC = LOGICAL LINK CONTROL MAC = MEDIA ACCESS CONTROL MDI = MEDIUM DEPENDENT INTERFACE PCS = PHYSICAL CODING SUBLAYER PHY = PHYSICAL LAYER ENTITY PMA = PHYSICAL MEDIUM ATTACHMENT PMD = PHYSICAL MEDIUM DEPENDENT WIS = WAN INTERFACE SUBLAYER XGMII = 10 GIGABIT MEDIA INDEPENDENT INTERFACE

rb_phy_02.pdf

Ethernet RS and PHYs – RS Functions

- The RS retains the following functions specified by P802.3ae, Clause 46:
 - Converts the logical P-SAP service primitives to/from electrical signals at the XGMII.
 - Map the first octet of Preamble to a Start control character, and align it to "lane 0" on the XGMII.
 - Map the first octet of IPG following a packet to a Terminate control character.

• For RPR, add/modify the following RS functions:

- Generate IPG according to the rules specified in 802.3 (for ethernet, interframe gap period is generated by the MAC).
- Modify the Link Fault Signaling behavior of the RS to allow dual-simplex operation as described in 802-17-01-0075 (Sept).

Ethernet RS and PHYs – Frame mapping

 The Reconciliation Sublayer maps a logical RPR MAC frame to an Ethernet-compatible physical frame, and adds IPG:

Ethernet RS and PHYs – RS I/Os

Ethernet RS and PHYs – PHYs

- Include the 10 GbE Physical Layer in the RPR standard by reference to P802.3ae (excluding the RS).
 - Support the optional XGMII with no change.
 - Support the optional XGXS/XAUI with no change.
 - Support all seven PHYs with their associated sublayers with no changes.
 - Four "LAN PHYs" operating at a data rate of 10.0 Gbps.
 - Three "WAN PHYs" operating at a data rate and format compatible with SONET STS-192c and SDH VC-4-64c.

SONET/SDH PHYS

802-17-01-00118

rb_phy_02.pdf

SONET RS and PHYs - Layer Diagram

SPI – SYSTEM PACKET INTERFACE

rb_phy_02.pdf

Main Points

- SONET/SDH PHY supports full-duplex operations
- The SONET/SDH layer used in IEEE 802.17 is fully compliant with the existing ITU-T Recommendations (e.g. G.707 and G.783)
- Two different adaptation sublayers are foreseen for IEEE 802.17
 - The GFP adaptation sublayer
 - The PoS adaptation sublayer
- The adaptation layers work over any defined SONET/SDH Path layer (VC4 or VC4-4Nc) or virtually concatenated Path (VC4-Nv or STS-1-Nv)

System Level Interface (SPI)

- SPI is a family of interfaces already defined by the OIF to interconnect the MAC and the PHY entities
- Two versions are supported for IEEE 802.17
 - SPI Level 3
 - SPI Level 4 Phase 1 and 2

GFP Framing

- GFP operations should be compliant with G.7041
- It is proposed to use the frame-mapped GFP with the null extension header and no GFP FCS
- These functions are divided into two blocks
 - The Generic Reconciliation Sublayer (GRS)
 - The GFP Adaptation sublayer

Generic Reconciliation Sublayer

- Adds the first 8 bytes of the RPR frame according to the GFP specification (Tx direction)
- Optionally check the tHEC and Type fields and regenerates the first 8 bytes of the RPR frame (Rx direction)
- Sends/Receives the GFP frames to/from the SPI
- Conveys the Signal Fail (MDSF) and Signal Degrade (MDSD) information from the Layer Management up to the RPR MAC sublayer
- Three GRS versions are defined
 - GRS Version 1 with the 8-bit SPI-3
 - GRS Version 2 with the 32-bit SPI-3
 - GRS Version 3 with the SPI-4 Phase 2

GFP Adaptation Sublayer

- Performs GFP frame delineation (Rx direction)
- Performs GFP rate adaptation (inserting/removing GFP idle frames)
- Performs scrambling/descrambling of the GFP payload area
- Conveys the Trail Signal Degrade (TSD) from the SONET/SDH layer to the LME
- Conveys the Trail Signal Fail (TSF) from the SONET/SDH layer to the LME
- Detects the Payload Mismatch (PLM) and the Loss of Frame Delineation (LFD) defects

PoS Framing

- The PoS framing is another option for mapping RPR frames over SONET/SDH interfaces
- PoS shall use byte-synchronous HDLC for frame delineation. There is no PPP/HDLC frame encapsulation.
- These functions are divided into two blocks
 - The PoS Reconciliation Sublayer (PRS)
 - The PoS Adaptation sublayer

PoS Reconciliation Sublayer

- Sends/Receives the RPR frames to/from the SPI
- Conveys the Signal Fail (MDSF) and Signal Degrade (MDSD) information from the LME up to the RPR MAC
- Three PRS versions are defined
 - PRS Version 1 with the 8-bit SPI-3
 - PRS Version 2 with the 32-bit SPI-3
 - PRS Version 3 with the SPI-4 Phase 1
 - PRS Version 3 with the SPI-4 Phase 2

PoS Adaptation Sublayer

- Performs flag insertion and deletion
- Performs octet stuffing and de-stuffing
- Conveys the Trail Signal Degrade (TSD) from the SONET/SDH layer to the LME
- Conveys the Trail Signal Fail (TSF) from the SONET/SDH layer to the LME
- Detects the Payload Mismatch (PLM) defect

RPR Clocking

- Ethernet stations are independently clocked.
 - 10 GbE sublayers support multiple clock domains—MAC and PHY could be separately clocked.
- SONET stations are either synchronous or independently-timed:
 - Local timing from a station clock source
 - Stratum-3 supported for interoperability but not required
 - Line timing from the received clock.
 - Operation over virtual channels of a synchronous network.

- SONET and Ethernet PHYs for RPR are described using a uniform layer model.
- A single, PHY-agnostic PSAP interface is defined between the MAC and PHY layers.
- A family of Reconciliation Sublayers are used to adapt the logical PSAP interface to standard Ethernet and SONET electrical interfaces.
- Use standardized Ethernet and SONET PHYs for RPR with no changes.
- Common physical layer approach to several proposals.