



#### PHY Layer Support

#### Steven Wood Cisco Systems

November 5, 2001

802-17-01-00119 sw\_phy\_01.pdf







- What is the performance impact of not pre-pending the length field to the RPR MAC frame for GFP support
- Is this performance penalty worth the additional complexity?
- should this complexity be optional or mandatory?



# **Elements of Delay**



- 1. Queueing above the MAC
- 2. Delay through MAC
- 3. Delay due to GFP length calculation & Store Forward
- 4. Variable delay on passthru path due to arbitration for media
- 5. Fiber Delay
- 6. Delay out of MAC to the client
- 1 is dependent on fairness algorithm, transit path design and ring utilization
- 6 can be ignored as one time cost
- 2,3,4,5 recur hop by hop but 2 is small November 5, 2001 802-17-01-00119 sw\_phy\_01.pdf



# **Typical Delays**



- SF or GFP Length Calculation Delay in uSec
  - Typical Voice packet is 64 800 bytes

| Speed<br>Size | 10 G  | 2.4 G | 1 G   | 622 M  |
|---------------|-------|-------|-------|--------|
| 64            | 0.051 | 0.206 | 0.512 | 0.823  |
| 200           | 0.160 | 0.643 | 1.600 | 2.572  |
| 400           | 0.320 | 1.286 | 3.200 | 5.144  |
| 800           | 0.640 | 2.572 | 6.400 | 10.288 |

November 5, 2001

802-17-01-00119 sw\_phy\_01.pdf







 Delay when add traffic starts just before PB packet available

| Size<br>Speed | 1522      | 9000      |
|---------------|-----------|-----------|
| 10 G          | 1.22 usec | 7.40 usec |
| <b>2.4 G</b>  | 4.89 usec | 29.6 usec |
| 1 G           | 10.5 usec | 74.0 usec |
| 622 M         | 19.6 usec | 118 usec  |

November 5, 2001

802-17-01-00119 sw\_phy\_01.pdf



# Fiber Delay



- Fiber delay approx 5 us per km
- Total Ring circumferences range from 10's to 1000's of km
  - At 2000 km delay is 10 ms
  - At 200 km delay is 1ms
  - At 20 km delay is 100 us







- Majority of rings <= 16 nodes
- Typical ring size 200 1000 km
- Worst case delay occurs when the PB delay occurs at every node
  - need to design for worst case
- Total Ring Delay
  - N \* (SFdelay+GFPdelay+Pbdelay) + Fiber Delay





- 8 Node, OC-192c, 50 km ring, 1522 byte MTU
- All times in us for next charts

| Size      | 64    | 100   | 400   | 800   |
|-----------|-------|-------|-------|-------|
| SF or GFP | 0.05  | 80.0  | 0.32  | 0.64  |
| PB Delay  | 1.22  | 1.22  | 1.22  | 1.22  |
| Total GFP | 0.41  | 0.64  | 2.56  | 5.12  |
| Total     | 260.5 | 261.0 | 264.8 | 269.9 |
| %         | 0.16% | 0.25% | 0.97% | 1.90% |

November 5, 2001

802-17-01-00119 sw\_phy\_01.pdf





• 8 Node, OC-48c, 50 km ring, 1522 byte MTU

| Size      | 64     | 100    | 400    | 800    |
|-----------|--------|--------|--------|--------|
| SF or GFP | 0.21   | 0.32   | 1.29   | 2.57   |
| PB Delay  | 4.89   | 4.89   | 4.89   | 4.89   |
| Total GFP | 1.65   | 2.57   | 10.29  | 20.58  |
| Total     | 292.44 | 294.29 | 309.72 | 330.30 |
| %         | 0.56%  | 0.87%  | 3.32%  | 6.23%  |





- 8 Node, OC-12c, 50 km ring, 1522 byte MTU
- Note: This provides only 80 Mb/s per node

| Size      | 64    | 100   | 400   | 800   |
|-----------|-------|-------|-------|-------|
| SF or GFP | 0.82  | 1.29  | 5.14  | 10.3  |
| PB Delay  | 19.6  | 19.6  | 19.6  | 19.6  |
| Total GFP | 6.58  | 10.3  | 41.2  | 82.3  |
| Total     | 419.8 | 427.2 | 488.9 | 571.2 |
| %         | 1.57% | 2.41% | 8.42% | 14.4% |





- 64 Node, OC-12c, 50 km ring, 1522 byte MTU
- Note: This provides only 10 Mb/s per node

| Size      | 64    | 100   | 400    | 800    |
|-----------|-------|-------|--------|--------|
| SF or GFP | 0.82  | 1.29  | 5.14   | 10.3   |
| PB Delay  | 19.6  | 19.6  | 19.6   | 19.6   |
| Total GFP | 52.8  | 82.3  | 329    | 658    |
| Total     | 1608  | 1667  | 2161   | 2819   |
| %         | 3.28% | 4.94% | 15.23% | 23.35% |

802-17-01-00119 sw\_phy\_01.pdf





- 64 Node, OC-12c, 500 km ring, 1522 byte MTU
- Note: This provides only 10 Mb/s per node

| Size      | 64    | 100   | 400   | 800   |
|-----------|-------|-------|-------|-------|
| SF or GFP | 0.82  | 1.29  | 5.14  | 10.3  |
| PB Delay  | 19.6  | 19.6  | 19.6  | 19.6  |
| Total GFP | 52.8  | 82.3  | 329   | 658   |
| Total     | 3858  | 3917  | 4411  | 5070  |
| %         | 1.37% | 2.10% | 7.46% | 13.0% |

802-17-01-00119 sw\_phy\_01.pdf





- 64 Node, OC-192c, 500 km ring, 1522 byte MTU
- More realistic perhaps?

| Size      | 64    | 100   | 400   | 800   |
|-----------|-------|-------|-------|-------|
| SF/GFP    | 0.05  | 80.0  | 0.32  | 0.64  |
| ADD       | 1.22  | 1.22  | 1.22  | 1.22  |
| Total GFP | 3.28  | 5.12  | 20.9  | 41.0  |
| Total     | 334.5 | 338.2 | 369.0 | 409.9 |
| %         | 0.98% | 1.51% | 5.55% | 10.0% |



# Conclusion



- Carrying the GFP length in the MAC (not necessarily in the frame format) improves the delay characteristic of packets flowing around the ring
- Improvement is not enough to justify a requirement in all MACs to carry / calculate length at speeds at or above OC-12 (we could argue about OC12)
- The verb may or should can be used with regard to the MAC providing a length to the PHY layer
  - Allow vendors designing MAC and Framer chips to determine the best place for the logic given their existing products and schedules