# dvjConservative2003Nov08.fm

November 10, 2003 12:57 pm

# **Refined fairness**

This contribution provides replacement text for Clause 9 of P802.17 RPR D2.6. Several types of changes are proposed:

- a) Less extremes. The minimum and maximum priority levels are 16 and 255 respectively.
- b) Normalized. This specification specifies behavior time-constants, not design-specific numbers.
- c) Conservative simplified.
  - 1) No hysteresis.
  - 2) No round-trip delay dependency.
  - 3) Initial target is based on history, rather than complex weighted transit-traffic monitors.
- d) Scope. A scope parameter allows delayed reaction to ill-formed congestion indications.

The following TBDs are being considered.

a) For continuity, this draft supports rate-limits through shapers or rate comparisons. For simplicity, perhaps only the (self-calibrating) shapers should be specified.

The following outstanding questions are being investigated.

|    |                                                                                                               | <i>2</i> / |
|----|---------------------------------------------------------------------------------------------------------------|------------|
| a) | Why do we generate <i>lpAddRateCongested</i> ? Its initialized and generated, but apparently not used.        | 28         |
|    | <b>Confirmation:</b> The <i>addRateCongested</i> is needed for rate-based throttles; the editors included the | 29         |
|    | low-pass filtered version of this value for apparent completeness.                                            | 30         |
| b) | Are the hops to congestion properly measured?                                                                 | 31         |
|    | Confirmation: An increment is needed in page 289, line 28:                                                    | 32         |
|    | ==> hopsToCongestion = ringInfo.totalHopsTx[myRI] + 1;                                                        | 33         |
|    | Confirmation: An increment is needed in page 289, line 31:                                                    | 34         |
|    | ==> hopsToCongestion = MAX_STATIONS - rcvdTtl + 1;                                                            | 35         |
| c) | Most of the code seems to generate the next fairness message based on what was last received.                 | 36         |
|    | Does this work on startup or on a steered edge, where no such information has been received?                  | 37         |
|    | <b>Confirmation:</b> Since nothing is being sent through this station, it will become a congestion head.      | 38         |
|    | Thus, the values of the transmitted fairness frame appear irrelevant.                                         | 39         |
|    | Speculation: Woops! What happens if the last fairness frame were from the other ri?                           | 40         |
| d) | In D2.7, Table-Row 9.6-11, isn't the following qualification condition redundant:                             | 41         |
| ., | nrXmitRate < unreservedRate[myRI] &&                                                                          | 42         |
|    | <b>Speculation:</b> This could redundant, but possibly depends on the downstream shaper details.              | 43         |
| e) | In D2.7, Table-Row 9.9-10, there is a statement:                                                              | 44         |
| 0) | allowedRate = Min(unreservedRate[myRI], localFairRate);                                                       | 45         |
|    | <b>Speculation:</b> This requirement could be fulfilled by precomputing the following:                        | 46         |
|    | maxAllowedRate2 = Min(maxAllowedRate, unreservedRate[myRI]);                                                  | 47         |
|    | and then using <i>maxAllowedRate2</i> where <i>maxAllowedRate</i> is now used?                                | 48         |
|    | and then using manifold currence where manifold currence is now used.                                         | 49         |
|    |                                                                                                               | 50         |
|    |                                                                                                               | 51         |
|    |                                                                                                               | 52         |
|    |                                                                                                               | 53         |

#### 9.1.1 Aggressive behaviors

The computation of *localFairRate* value is based on congestion conditions, as illustrated Figure 9.12. When uncongested, the *localFairRate* value is set to FULL\_RATE and *allowedRate* approaches an *lpAddRate/weight* traffic limit. When uncongested, *localFairRate* and *allowedRate* are immediately set to the *lpAddRate/weight*.

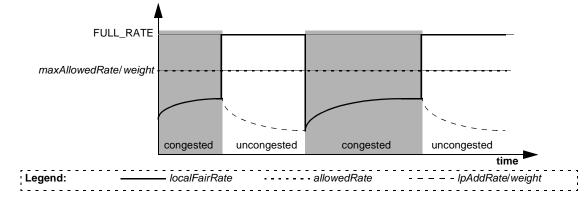
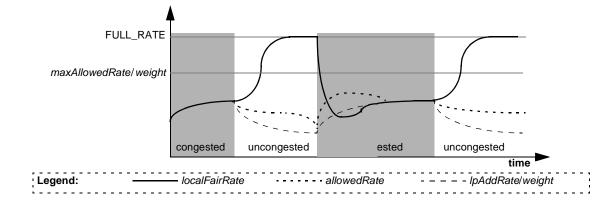




Figure 9.12—Aggressive tracking of *localFairRate* computations

# 9.1.2 Conservative behaviors

The computation of *localFairRate* value is based on *loAddRate/weight* congestion-condition estimates, computed as illustrated Figure 9.13. When congested, the *localFairRate* value approaches an *lpAddRate/weight* traffic rate; when uncongested, *localFairRate* approaches the FULL\_RATE value.



#### Figure 9.13—Tracking of *localFairRate* computations

The *allowedRate* tracks the *localFairRate* during congested intervals, while remaining constrained to a *maxAllowedRate/weight* value during uncongested intervals.

Comments from David V. James This is unapproved contribution, subject to change

# 9.1.3 Congestion domains

A congestion domain ends when an upstream station A senses no need to inhibit contention-point traffic at downstream station B, as illustrated Figure 9.14.

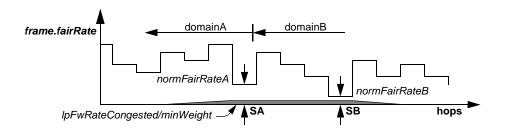



Figure 9.14—Fairness domain boundaries

Station SA is aware of downstream congestion point at station SB, based on its reception of the *normFairRateB=fairFrame.fairRate* value. Station SA is also aware of *lpFwRateCongested/minWeight*, a conservative estimate of the upstream transmission rates.

If the upstream transmission rates are less than their restricted-by-*normFairRateB* values, station SA assumes these stations flows would also be unaffected by a larger *normFairRateA* value. Thus, station SA can communicate a *fairFrame.fairRate=normFairRateA* to its upstream neighbors, without impacting traffic through the more congested downstream station SB.

# 9.2 ...

#### 9.2.1 Common state machine definitions, variables, and routines

#### 9.2.1.1 Common state machine definitions

|                                                                                                                                                                                                                                                                                                     | 32 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| The definitions listed in this section are referenced by multiple state machines.                                                                                                                                                                                                                   | 33 |
| FULL_RATE                                                                                                                                                                                                                                                                                           | 34 |
| A internal value corresponding to a full-scale line-rate value.                                                                                                                                                                                                                                     | 35 |
| Value: 3FFFFFF <sub>16</sub>                                                                                                                                                                                                                                                                        | 36 |
| SCALE                                                                                                                                                                                                                                                                                               | 37 |
| The scalar that converts the advertised and internal full-scale values.                                                                                                                                                                                                                             | 38 |
| Value: (1 << 14)                                                                                                                                                                                                                                                                                    | 39 |
|                                                                                                                                                                                                                                                                                                     | 40 |
| 9.2.1.2 Common state machine variables                                                                                                                                                                                                                                                              | 41 |
| <ul> <li>FULL_RATE <ul> <li>A internal value corresponding to a full-scale line-rate value.</li> <li>Value: 3FFFFFF<sub>16</sub></li> </ul> </li> <li>SCALE <ul> <li>The scalar that converts the advertised and internal full-scale values.</li> <li>Value: (1 &lt;&lt; 14)</li> </ul> </li> </ul> | 42 |
| addRate                                                                                                                                                                                                                                                                                             | 43 |
| The rate that fairness-eligible traffic is added. (Line-rate corresponds to FULL_RATE.)                                                                                                                                                                                                             | 44 |
| addRateCongested                                                                                                                                                                                                                                                                                    | 45 |
| The rate that fairness eligible traffic intended for destinations downstream of the congestion point,                                                                                                                                                                                               | 46 |
| is added to the ringlet. (Line-rate corresponds to FULL_RATE).                                                                                                                                                                                                                                      | 47 |
| addRateCongestedOk                                                                                                                                                                                                                                                                                  | 48 |
| Indicates whether fairness eligible traffic bound for a destination beyond the congestion point is                                                                                                                                                                                                  | 49 |
| allowed to be added to the ringlet.                                                                                                                                                                                                                                                                 | 50 |
| TRUE—Traffic can be added.                                                                                                                                                                                                                                                                          | 51 |
|                                                                                                                                                                                                                                                                                                     | 52 |
| addRateOk                                                                                                                                                                                                                                                                                           | 53 |
| Indicates whether fairness eligible traffic is allowed to be added to the ringlet.                                                                                                                                                                                                                  | 54 |
|                                                                                                                                                                                                                                                                                                     |    |

| 1        | TRUE—Traffic can be added.                                                                                           |
|----------|----------------------------------------------------------------------------------------------------------------------|
| 2        | FALSE—(Otherwise.)                                                                                                   |
| 3        | admissionMethod                                                                                                      |
| 4        | An enumerated value used to specify the traffic admission method:                                                    |
| 5        | RATE_BASED—Admission is based on rate policing.                                                                      |
| 6        | SHAPER_BASED—Admission is based on rate shaping.                                                                     |
| 7        | allowedRate                                                                                                          |
| 8        | The rate at which fairness eligible traffic can be added to the ring.                                                |
| 9        | (Line-rate corresponds to FULL_RATE.)                                                                                |
| 10       | allowedRateCongested                                                                                                 |
| 11       | The rate at which a station is allowed to add fairness eligible traffic intended for destinations                    |
| 12       | downstream of the congestion point. (Line-rate corresponds to FULL_RATE.)                                            |
| 13       | fwRate                                                                                                               |
| 14       | The rate that fairness-eligible traffic transits the station. (Line-rate corresponds to FULL_RATE.)                  |
| 15       | fwRateCongested                                                                                                      |
| 16       | The rate at which fairness-eligible traffic intended for destinations downstream of the congestion                   |
| 17       | point transits the station. (Line-rate corresponds to FULL_RATE.)                                                    |
| 18       | localCongested                                                                                                       |
| 19       | Indicates whether or not the station is locally congested.                                                           |
| 20       | TRUE—The station is locally congested.                                                                               |
| 21       | FALSE—(Otherwise.)                                                                                                   |
| 22       | lpFwRate                                                                                                             |
| 23       | A smoothed (low-pass filtered) version of <i>fwRate</i> .                                                            |
| 24       | lpFwRateCongested                                                                                                    |
| 25       | A smoothed (low-pass filtered) version of the <i>fwRateCongested</i> .                                               |
| 26       | localFairRate                                                                                                        |
| 27       | The advertised local-station transmission rate by which a station limits upstream fairness eligible                  |
| 28       | traffic. (Line-rate corresponds to FULL_RATE.)                                                                       |
| 29       | <i>lpNrRate</i>                                                                                                      |
| 30       | A smoothed (low-pass filtered) version of the <i>nrRate</i> .                                                        |
| 31       | maxAllowedRate                                                                                                       |
| 32<br>33 | The maximum permitted value of the <i>allowedRate</i> . (Line-rate corresponds to FULL_RATE.) <i>maxAllowedRate2</i> |
| 33<br>34 | The minimum of <i>maxAllowedRate</i> and <i>unreservedRate</i> [ <i>myRI</i> ] allowed rates.                        |
| 35       | normFairRate                                                                                                         |
| 36       | A scaled version of <i>localFairRate</i> for comparing to the fairness frame's <i>fairRate</i> value.                |
| 37       | (Line-rate corresponds to FULL_RATE/weight.)                                                                         |
| 38       | nrRate                                                                                                               |
| 39       | The rate that non-reserved traffic is transmitted. (Line-rate corresponds to FULL_RATE).                             |
| 40       | received Hops                                                                                                        |
| 41       | The distance, in hops, between the local station and the head of the congestion domain. The value                    |
| 42       | of MAX_STATIONS indicates the local station does not lie within a congestion domain.                                 |
| 43       | receivedRate                                                                                                         |
| 44       | The effective congestion rate derived from the last received fairness frame.                                         |
| 45       | receivedScope                                                                                                        |
| 46       | The scope of congestion-report applicability. This is cleared to zero whenever fairness frames                       |
| 47       | return to a less-congested self, thereby indicating the suspect nature of its reported values.                       |
| 48       | rxFrame                                                                                                              |
| 49       | The contents of a received RPR frame.                                                                                |
| 50       | stqHighThreshold                                                                                                     |
| 51       | A level of STQ occupancy at or above which fairness eligible add frames are no longer admitted.                      |
| 52       | Defined only for a dual-queue implementation.                                                                        |
| 53       | Range: [3 * mtuSize, stqFullThreshold - mtuSize]                                                                     |
| 54       | Default: 0.25 * <i>stqFullThreshold</i>                                                                              |
|          |                                                                                                                      |

| <pre>stqLowThreshold A level of STQ occupancy at or above which congestion on the outbound link is imn only for dual-queue implementations. Range: [mtuSize, stqMedThreshold - mtuSize] Default: 0.5 * stqHighThreshold</pre>                                                                                                                           | ninent. Defined 1<br>3<br>4<br>5<br>6                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 9.2.1.3 Common state machine routines                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                     |
| <i>Hops(frame)</i><br>Indicates the distance from the fairness frame's source station, as defined by Equation                                                                                                                                                                                                                                           |                                                                                                                       |
| (MAX_STATIONS - rxFrame.ttl + 1)                                                                                                                                                                                                                                                                                                                        | (9.1) 11 12                                                                                                           |
| <i>Mul(value1, value2)</i><br>An unsigned multiplication by a 30-bit binary fraction, defined by Equation 9.2.                                                                                                                                                                                                                                          | 13<br>14<br>15                                                                                                        |
| (((uInt64_t)value1 * value2) / SCALE)                                                                                                                                                                                                                                                                                                                   | (9.2) 16<br>17                                                                                                        |
| <i>Div(value1, value2)</i><br>An unsigned division by a 30-bit binary fraction, defined by Equation 9.3.                                                                                                                                                                                                                                                | 17<br>18<br>19<br>20                                                                                                  |
| (((uInt64_t)value1 * SCALE) / value2)                                                                                                                                                                                                                                                                                                                   | (9.3) 21                                                                                                              |
| <ul> <li>MultiChokeInd()</li> <li>Transfer to the MAC client via an MA_CONTROL.indication having a MULTI_CHOKE_IND (see Table 5.7).</li> <li>ScaleDown(value)</li> <li>An operation that converts between internal-scaled and advertised-scaled values.</li> </ul>                                                                                      | un opcode of 22<br>23<br>24<br>25<br>26<br>27                                                                         |
| ((value - (value >> 16)) / SCALE)                                                                                                                                                                                                                                                                                                                       | (9.4) 28<br>29                                                                                                        |
| ScaleDown(value)<br>An operation that converts the internal-scaled and advertised-scaled values.                                                                                                                                                                                                                                                        | 30<br>31<br>32                                                                                                        |
| ((value * SCALE) + ((value * SCALE) >> 10))                                                                                                                                                                                                                                                                                                             | (9.5) 33                                                                                                              |
| 9.2.2 Literals, variables, and routines defined in other clauses                                                                                                                                                                                                                                                                                        | 34<br>35<br>36                                                                                                        |
| This clause references the following variables and routines defined in Clause 6.<br>classBAccessTime<br>classCAccessTime<br>currentTime<br>EntryInQueue()<br>Min(value1, value2)<br>myDualQueueStation<br>myEdgeState<br>myMacAddress<br>myProtectMethod<br>myRI<br>Other(ri)<br>passAddFe<br>passAddFeOrStq<br>passAddFeCongested<br>sendD<br>stqDepth | $\begin{array}{c} 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\end{array}$ |

| 1        | This clause references the following literals and variables defined in Clause 10:            |
|----------|----------------------------------------------------------------------------------------------|
| 2        | conservativeMode                                                                             |
| 3        | MAX_STATIONS                                                                                 |
| 4        | myTopoInfo.unreservedRate[ri]                                                                |
| 5        | ringInfo.multichokeUser[ri]                                                                  |
| 6        | ringInfo.totalHopsTx[ri]                                                                     |
| 7        | TransmitFrame(frame)                                                                         |
| 8        |                                                                                              |
| 9        | 9.2.3 FairessRating state machine                                                            |
| 10       | •                                                                                            |
| 11       | 9.2.3.1 FairnessRating state machine definitions                                             |
| 12       |                                                                                              |
| 13       | The definitions listed in this section are referenced by multiple state machines.            |
| 14       | BYTES_PER_AGING                                                                              |
| 15       | The maximum number of bytes included in an aging interval.                                   |
| 16       | Value: TBD                                                                                   |
| 17       | ONE_BYTE                                                                                     |
| 18       | An incremental rate corresponding to one fairness-eligible byte, as defined by Equation 9.6. |
| 19       |                                                                                              |
| 20       | (FAIR_RATE1 / (BYTES_PER_AGING * (admissionMethod==RATE_BASED ? AGING_COEF : 1)))(9.6)       |
| 21       |                                                                                              |
| 22       | 9.2.3.2 FairnessRating state machine variables                                               |
| 23       |                                                                                              |
| 24       | addRate                                                                                      |
| 25       | addRateCongested                                                                             |
| 26       | admissionMethod                                                                              |
| 20       | See 9.2.1.2.                                                                                 |
| 28       | advertisementInterval                                                                        |
| 28<br>29 | The length of an advertisement interval.                                                     |
| 30       | advertisementTime                                                                            |
| 30       | The time at the start of the current advertisement interval.                                 |
| 31       | agingInterval                                                                                |
|          | The length of an aging interval.                                                             |
| 33       | agingTime                                                                                    |
| 34       | The time at the start of the current aging interval.                                         |
| 35       | byteAdded                                                                                    |
| 36       | Set to 1 when an added byte is transmitted.                                                  |
| 37       | byteTransited                                                                                |
| 38       | Set to 1 when an transited byte is transmitted.                                              |
| 39       | currentTime                                                                                  |
| 40       | See 9.2.2.                                                                                   |
| 41       | fwRate                                                                                       |
| 42       | fwRateCongested                                                                              |
| 43       | See 9.2.1.2.                                                                                 |
| 44       | myDualQueueStation                                                                           |
| 45       | See 9.2.2.                                                                                   |
| 46       | nrRate                                                                                       |
| 47       | receivedHops                                                                                 |
| 48       | rxFrame                                                                                      |
| 49       | See 9.2.1.2.                                                                                 |
| 50       |                                                                                              |
| 51       | thisFrame                                                                                    |
| 52       | The contents of the current frame being transmitted.                                         |
| 53       |                                                                                              |
| 54       |                                                                                              |

| 2.3.3 FairnessRating functions                                                               |       |
|----------------------------------------------------------------------------------------------|-------|
| FairnessAging()                                                                              |       |
| Invokes the actions of the state machine specified in 9.2.4.                                 |       |
| FairnessEligible(frame)                                                                      |       |
| Indicates when the frame is fairless eligible, as specified in Equation 9.7.                 |       |
| ((frame.sc == CLASS_B && frame.fe == 1)    frame.sc == CLASS_C)                              | (9.7) |
| <i>FairnessReceive()</i><br>Invokes the actions of the state machine specified in 9.2.8.     |       |
| FairnessTransmit()                                                                           |       |
| Invokes the actions of the state machine specified in 9.2.9.<br>ReceiveScfFrame()            |       |
| Provides a received single-choke fairness frame, if one has been received since last called. |       |
| value—The currently the last received single-choke fairness frame.                           |       |
| (null)—No single-choke fairness frame is available.                                          |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |

# 9.2.3.4 FairnessRating state table

The FairnessRating state table counts the bytes in each aging interval, as specified in Table 9.1.

| Current state |                                                               | Ň   | Next state                                              |       |
|---------------|---------------------------------------------------------------|-----|---------------------------------------------------------|-------|
| state         | condition                                                     | Row | action                                                  | state |
| START         | byteAdded                                                     | 1   | byteAdded= FALSE;                                       | ADDS  |
|               | byteTransited                                                 | 2   | byteTransited= FALSE;                                   | FORW  |
|               | (currentTime - agingTime)<br>>= agingInterval                 | 3   | FairnessAging();<br>agingTime = currentTime;            | START |
|               | (rxFrame= ReceiveScfFrame())<br>!= NULL                       | 4   | FairnessReceive();                                      |       |
|               | (currentTime - advertisementTime)<br>>= advertisementInterval | 5   | FairnessTransmit();<br>advertisementTime = currentTime; |       |
| ADDS          | FairEligible(thisFrame) == FALSE                              | 6   | _                                                       | PLUS  |
|               | admissionMethod == RATE_BASED &&<br>frame.ttl > receivedHops  | 7   | addRate += ONE_BYTE;<br>addRateCongested += ONE_BYTE;   |       |
|               |                                                               | 8   | addRate += ONE_BYTE;                                    |       |
| FORW          | FairEligible(thisFrame) == FALSE                              | 9   | _                                                       | PLUS  |
|               | frame.ttl > receivedHops                                      | 10  | fwRateCongested += ONE_BYTE;<br>fwRate += ONE_BYTE;     |       |
|               |                                                               | 11  | fwRate += ONE_BYTE;                                     |       |
| PLUS          | myDualQueueStation == FALSE &&<br>frame.sc != CLASS_A0        | 12  | nrRate += ONE_BYTE;                                     | START |
|               | _                                                             | 13  |                                                         |       |

#### Table 9.1—FairnessRating state table

| <ul> <li>Row 9.1-1: This station's fairness-eligible added bytes are counted.</li> <li>Row 9.1-2: This station's fairness-eligible transited bytes are counted.</li> <li>Row 9.1-3: Fairness aging occurs once every aging interval.</li> <li>Row 9.1-4: Fairness frames are transmitted periodically.</li> <li>Row 9.1-5: Fairness frames are processed when received.</li> </ul>                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Row 9.1-6: The <i>addRate</i> counters only apply to fairness-eligible traffic.</li> <li>Row 9.1-7: (Optional: Necessary to support the rate-based admission method.)</li> <li>Rate-based admission methods calculate the <i>addRateCongested</i> value.</li> <li>Row 9.1-8: When transmitting before congestion, update only <i>addRate</i>.</li> </ul>                                                                                                 |
| <ul> <li>Row 9.1-9: The <i>fwRate</i> counters only apply to fairness-eligible traffic.</li> <li>Row 9.1-10: When transiting beyond congestion, update both <i>fwRate</i> and <i>fwRateCongested</i>.</li> <li>Row 9.1-11: When transiting before congestion, update only <i>fwRate</i>.</li> <li>Row 9.1-12: Row 9.1-13: (Optional: Necessary to support single-queue designs.) The <i>nrRate</i> value accounts for non-reserved byte transmissions.</li> </ul> |

| 9.2.4 FairnessAging state machine                                                                  |          |  |  |  |
|----------------------------------------------------------------------------------------------------|----------|--|--|--|
|                                                                                                    | 2<br>3   |  |  |  |
| 9.2.4.1 FairnessAging state machine definitions                                                    |          |  |  |  |
| NORM                                                                                               | 4<br>5   |  |  |  |
| A low-pass filter with a ringlet-delay dependent time constant. This value is nominally set to:    | 5        |  |  |  |
| (2*agingInterval)/ringletLoopDelay                                                                 | 7        |  |  |  |
| Where <i>ringletLoopDelay</i> is the nominal classA-traffic ringlet circulation time.<br>RAMP_NORM | 8<br>9   |  |  |  |
| A low-pass filter ramp-up time constant. This value is nominally set to NORM.<br>RAMP_SLOW         | 10<br>11 |  |  |  |
| A low-pass filter ramp-up time constant. This value is nominally set to NORM/4.                    | 12       |  |  |  |
| 9.2.4.2 FairnessAging state machine variables                                                      | 13<br>14 |  |  |  |
|                                                                                                    | 15       |  |  |  |
| addRate                                                                                            | 16       |  |  |  |
| addRateCongested                                                                                   | 17       |  |  |  |
| admissionMethod                                                                                    | 18       |  |  |  |
| See 9.2.1.2.                                                                                       | 19       |  |  |  |
| ageCoef                                                                                            | 20       |  |  |  |
| The coefficient used by the aging procedure to specify an effective filter time constant.          | 21       |  |  |  |
| Allowed: {1, 2, 4, 8, 16}<br>Default: 4                                                            | 22<br>23 |  |  |  |
| allowedRate                                                                                        | 23<br>24 |  |  |  |
|                                                                                                    | 24<br>25 |  |  |  |
| allowedRateCongested<br>See 9.2.1.2.                                                               | 23<br>26 |  |  |  |
| baseAllowedRate                                                                                    | 20       |  |  |  |
| The value of <i>allowedRate/weight</i> .                                                           | 27       |  |  |  |
| baseAllowedRateCongested                                                                           | 28<br>29 |  |  |  |
| The value of <i>allowedRateCongested/weight</i> .                                                  | 30       |  |  |  |
| fwRate                                                                                             | 30       |  |  |  |
| fwRateCongested                                                                                    | 31       |  |  |  |
| localFairRate                                                                                      | 32       |  |  |  |
| See 9.2.1.2.                                                                                       | 33<br>34 |  |  |  |
| lpAddRate                                                                                          | 34       |  |  |  |
| A smoothed (low-pass filtered) version of <i>fwRate</i> .                                          | 35       |  |  |  |
| lpFwRate                                                                                           | 30       |  |  |  |
| lpFwRateCongested                                                                                  | 38       |  |  |  |
| maxAllowedRate                                                                                     | 39       |  |  |  |
| See 9.2.1.2.                                                                                       | 40       |  |  |  |
| myDualQueueStation                                                                                 | 40       |  |  |  |
| See 9.2.2.                                                                                         | 42       |  |  |  |
| receivedRate                                                                                       | 43       |  |  |  |
| receivedScope                                                                                      | 44       |  |  |  |
| See 9.2.1.2.                                                                                       | 45       |  |  |  |
| target                                                                                             | 46       |  |  |  |
| A temporary variable that retains the value of intermediate calculations.                          | 47       |  |  |  |
| weight                                                                                             | 48       |  |  |  |
| The fairness weighting associated with this fairness instance.                                     | 49       |  |  |  |
|                                                                                                    | 50       |  |  |  |
|                                                                                                    | 51       |  |  |  |
|                                                                                                    | 52       |  |  |  |
|                                                                                                    | 53       |  |  |  |

#### 9.2.4.3 FairnessAging state machine routines

| FairnessChecking()                                            |
|---------------------------------------------------------------|
| Invokes the actions of the state machine specified in 9.2.5.  |
| Min(value1, value2)                                           |
| See 9.2.1.3.                                                  |
| Min3(value1, value2, value3)                                  |
| Returns the numerically smaller of the three argument values. |
| Mul(value1, value2)                                           |
| See 9.2.1.3.                                                  |

#### 9.2.4.4 FairnessAging state table

The FairnessAging state table, as specified in Table 9.2.

| Current state |                                        | ≥   | Next state                                                                                                                                                                                                |       |
|---------------|----------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| state         | condition                              | Row | action                                                                                                                                                                                                    | state |
| START         | admissionMethod ==<br>RATE_BASED       | 1   | addRate -= addRate/ageCoef;<br>addRateCongested -= addRateCongested/ageCoef;<br>fwRate -= fwRate/ageCoef;<br>fwRateCongested -= fwRateCongested/ageCoef;                                                  | FIRST |
|               | _                                      | 2   |                                                                                                                                                                                                           |       |
| FIRST         | _                                      | 3   | lpAddRate += Mul(addRate - lpAddRate, NORM);<br>lpFwRate += Mul(fwRate - lpFwRate, NORM);<br>lpFwRateCongested +=<br>Mul(fwRateCongested - lpFwRateCongested, NORM);                                      | NEXT  |
| NEXT          | !myDualQueueStation                    | 4   | lpNrRate += Mul(nrRate - lpNrRate, NORM);                                                                                                                                                                 | PAST  |
|               | conservativeMode                       | 5   |                                                                                                                                                                                                           |       |
|               |                                        | 6   |                                                                                                                                                                                                           |       |
| PAST          | admissionMethod !=<br>RATE_BASED       | 7   | addRate = 0;<br>fwRate = 0;<br>fwRateCongested = 0;                                                                                                                                                       | EXEC  |
|               | _                                      | 8   |                                                                                                                                                                                                           |       |
| EXEC          | _                                      | 9   | FairnessChecking();                                                                                                                                                                                       | NEAR  |
| NEAR          | receivedRate ><br>allowedRateCongested | 10  | target= Min3(receivedRate,<br>maxAllowedRate2/weight, 2*allowedRateCongested);<br>baseAllowedRateCongested +=<br>Mul(target - baseAllowedRateCongested,<br>(receivedScope != 0 ? RAMP_NORM : RAMP_SLOW)); | FINAL |
|               | —                                      | 11  | baseAllowedRateCongested = receivedRate;                                                                                                                                                                  | †     |
| FINAL         |                                        | 12  | allowedRateCongested =<br>baseAllowedRateCongested * weight;<br>SingleChokeIndication();                                                                                                                  | RETN  |

# Table 9.2—FairnessAging state table

| Row 9.2-1: For rate-based admission methods, add rates are filtered based on <i>ageCoef</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Row 9.2-2: For shaper-based admission methods, add rates need not be filtered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3  |
| Row 9.2-3: Low-pass filters are applied at the end of each aging interval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5  |
| Row 9.2-4: (Optional: Necessary for single-queue designs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6  |
| Row 9.2-5: (Optional: Necessary for conservativeMode designs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7  |
| The nonreserved rate is low-pass filtered to determine levels of consumed bandwidth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8  |
| Row 9.2-6: Nonreserved traffic is excluded from this computation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 |
| Row 9.2-7: For shaper-based admission methods, add rates are cleared before the next aging interval starts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 |
| <b>Row 9.2-8:</b> For rate-based admission methods, add rates are cleared before the next aging interval starts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11 |
| <b>Now 9.2-0.</b> For face-based admission memous, and faces are not eleared.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12 |
| Row 9.2-9: Conservative or aggressive fairness can be selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13 |
| <b>NOW 9.2-9:</b> Conservative of aggressive faitness can be selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| $\mathbf{D} = 0 1 1 0$ With a second in the line $1$ $\mathbf{U} = 1 \mathbf{D} + \mathbf{C}$ is the second seco | 15 |
| <b>Row 9.2-10:</b> When congestion is relieved, <i>allowedRateCongested</i> ramps towards its target value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16 |
| Row 9.2-11: When congestion increases, <i>allowedRateCongested</i> inherits the observed value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17 |
| Row 9.2-12: A SingleChokeIndication is sent to the client.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |

| 9.2.5 FairnessChecking state machine                                                | 1                     |
|-------------------------------------------------------------------------------------|-----------------------|
|                                                                                     | 2                     |
| 9.2.5.1 FairnessChecking state machine definitions                                  | 3                     |
|                                                                                     | 4                     |
| FAST                                                                                | 5                     |
| A low-pass filter with a fast time constant. This value is nominally set to 4*NORM. | 6                     |
| ONE                                                                                 | 7                     |
| A multiplicative scalar value with a full-scale value of $40000000_{16}$ .          | 8                     |
|                                                                                     | 9                     |
| 9.2.5.2 FairnessChecking state machine variables                                    | 10                    |
|                                                                                     | 11                    |
| allowed                                                                             | 12                    |
| A temporary variable that retains the value of intermediate calculations.           | 13                    |
| allowedRate                                                                         | 14                    |
| See 9.2.1.2.                                                                        | 15                    |
| conservativeMode                                                                    | 16                    |
| See 9.2.2.                                                                          | 17                    |
| localCongested                                                                      | 18                    |
| localFairRate                                                                       | 19                    |
| See 9.2.1.2.                                                                        | 20                    |
| <i>lpAddRate</i>                                                                    | 21                    |
| A smoothed (low-pass filtered) version of <i>fwRate</i> .                           | 22<br>23              |
| lpNrRate                                                                            | 23<br>24              |
| maxAllowedRate2                                                                     | 24                    |
| See 9.2.1.2.                                                                        | 25                    |
| myTopoInfo.unreservedRate[ri]<br>See 9.2.2.                                         | 20                    |
|                                                                                     | 28                    |
| stqDepth<br>See 9.2.2.                                                              | 20                    |
| step 5.2.2.<br>stqLowThreshold                                                      | 30                    |
| stqLowThreshold                                                                     | 31                    |
| See 9.2.1.2.                                                                        | 32                    |
| target                                                                              | 33                    |
| A temporary variable that retains the value of intermediate calculations.           | 34                    |
| weight                                                                              | 35                    |
| The fairness weighting associated with this fairness instance.                      | 36                    |
|                                                                                     | 37                    |
| 9.2.5.3 FairnessChecking state machine routines                                     | 38                    |
| <b>5 .</b>                                                                          | 39                    |
| Div(value1, value2)                                                                 | 40                    |
| See 9.2.1.3.                                                                        | 41                    |
| Max(value1, value2)                                                                 | 42                    |
| Returns the numerically larger of the two argument values.                          | 43                    |
| Min(value1, value2)                                                                 | 44                    |
| See 9.2.1.3.                                                                        | 45                    |
| Min3(value1, value2, value3)                                                        | 46                    |
| Returns the numerically smaller of the three argument values.                       | 47                    |
| Mul(value1, value2)                                                                 | 48                    |
| See 9.2.1.3.                                                                        | 49                    |
|                                                                                     | 50                    |
|                                                                                     | 51                    |
|                                                                                     | 52<br>53              |
|                                                                                     | <b>~</b> <del>`</del> |

#### 9.2.5.4 FairnessChecking state table

The FairnessChecking state table provides aggressive or conservative rate-limiting feedback, as specified in Table 9.3.

| Current state |                    | Current state<br>> Next state |                                                                                                                                       |        |
|---------------|--------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------|
| state         | condition          | Row                           | action                                                                                                                                | state  |
| START         | conservativeMode   | 1                             | _                                                                                                                                     | CONS   |
|               | _                  | 2                             |                                                                                                                                       | AGGR   |
| AGGR          | localCongested     | 3                             | localFairRate= lpAddRate/weight;                                                                                                      | AGGR2  |
|               | _                  | 4                             | localFairRate= FULL_RATE;                                                                                                             | _      |
| AGGR2         | —                  | 5                             | allowedRate = maxAllowedRate2;                                                                                                        | RETN   |
| CONS          | localCongested     | 6                             | localFairRate +=<br>Mul(lpAddRate/weight - localFairRate, FAST);                                                                      | CONS2  |
|               |                    | 7                             | target = Min(FULL_RATE,<br>Max(2*localFairRate, maxAllocatedRate2/weight));<br>localFairRate += Mul(target - localFairRate, FAST);    | _      |
| CONS2         |                    | 8                             | allowed = Min(FULL_RATE, lpAddRate + Max(0,<br>Min(myTopoInfo.unreservedRate[myRI] - lpNrRate,<br>maxAllowedRate2 - lpAddRate)) / 2); | CONS3  |
| CONS3         | myDualQueueStation | 9                             | allowedRate = Mul(allow, Max(0,<br>Min(ONE, Div(stqHighThreshold - stqDepth,<br>stqHighThreshold - stqLowThreshold))));               | RETURN |
|               | —                  | 10                            | allowedRate = allowed;                                                                                                                |        |

#### Table 9.3—FairnessChecking state table

**Row 9.3-1:** The aggressive mode may be supported. **Row 9.3-2:** The conservative mode may be supported.

(Optional: The AGGR and AGGR2 states are necessary to support aggressive fairness.)
Row 9.3-3: For aggressive/congested, *localFairRate* is based on the weighted averaged add rate.
Row 9.3-4: For aggressive/uncongested, *localFairRate* is set to the largest (unconstrained) add rate value.
Row 9.3-5: For all aggressive conditions, transmissions are bounded only by the *maxAllowedRate* limit.
(Optional: The {CONS, CONS2, CONS3} states are necessary to support conservative fairness.)
Row 9.3-6: When congested, *myFairRate* tracks the *addRate* measurement.
Row 9.3-7: When not congested, *myFairRate* tracks the FULL\_RATE target.
Row 9.3-8: The *allowed* rate is no larger than *lpAddRate* by half of the smallest: a) unused non-reserved bandwidth or b) remaining *maxAllowedRate2*-constrained bandwidth.
Row 9.3-9: (Optional: This row is necessary to support dual-queue station conservative fairness.)
Reduce *allowedRate* as the *stqDepth* transitions from *stqLowThreshold* to *stqHighThreshold*.

Row 9.3-10: On a single-queue stations, *allowedRate* is uninfluenced by *stqDepth* depths.

| 9.2.6 CongestionSense state machine                                                                                 | 1           |
|---------------------------------------------------------------------------------------------------------------------|-------------|
| The CongestionSense state machine updates the <i>localCongested</i> variable based on sensed congestion conditions. | 4           |
| 9.2.6.1 CongestionSense state machine variables                                                                     | 5<br>6<br>7 |
| classBAccessTime                                                                                                    | 7<br>8      |
| classCAccessTime                                                                                                    | 9           |
| See 9.2.2.                                                                                                          | 10          |
| classBAccessDelay                                                                                                   | 11          |
| Indicates the maximum amount of time any classB add traffic can wait to be transmitted befo indicating congestion.  | re 12<br>13 |
| Range: [100 µs, 25.5 ms], in 100 µs increments                                                                      | 14          |
| Default: 1.00 ms                                                                                                    | 15          |
| classCAccessDelay                                                                                                   | 16          |
| Indicates the maximum amount of time any classB add traffic can wait to be transmitted befo                         | re 17       |
| indicating congestion.                                                                                              | 18          |
| Range: [100 µs, 25.5 ms], in 100 µs increments                                                                      | 19          |
| Default: 1.00 ms                                                                                                    | 20          |
| currentTime                                                                                                         | 21          |
| See 9.2.2.                                                                                                          | 22          |
| fwRate                                                                                                              | 23          |
| localCongested                                                                                                      | 24          |
| <i>lpNrRate</i>                                                                                                     | 25          |
| maxAllowedRate                                                                                                      | 26          |
| maxAllowedRate2<br>See 9.2.1.2.                                                                                     | 27          |
|                                                                                                                     | 28<br>29    |
| myDualQueueStation<br>myTopoInfo.unreservedRate[ri]                                                                 | 29<br>30    |
| See 9.2.2.                                                                                                          | 30          |
| rateLowThreshold                                                                                                    | 31          |
| Rate at or above which congestion on the outbound link is imminent.                                                 | 33          |
| Range: [0.5 * rateHighThreshold, 0.99 * rateHighThreshold]                                                          | 34          |
| Default: 0.9 * rateHighThreshold                                                                                    | 35          |
| stqDepth                                                                                                            | 36          |
| See 9.2.2.                                                                                                          | 37          |
| stqHighWatermark                                                                                                    | 38          |
| The highest level of STQ occupancy since the last reset of this value.                                              | 39          |
| stqLowThreshold<br>See 9.2.1.2.                                                                                     | 40<br>41    |
| stqLowWatermark                                                                                                     | 42          |
| The lowest level of STQ occupancy since the last reset of this value.                                               | 43          |
|                                                                                                                     | 44          |
|                                                                                                                     | 45          |
|                                                                                                                     | 46          |
|                                                                                                                     | 47          |
|                                                                                                                     | 48          |
|                                                                                                                     | 49          |
|                                                                                                                     | 50          |
|                                                                                                                     | 51          |

#### 9.2.6.2 CongestionSense state table

| Current state |                                                          | Row | Next state                                            |        |
|---------------|----------------------------------------------------------|-----|-------------------------------------------------------|--------|
| state         | condition                                                | Rc  | action                                                | state  |
| START         | myTopoInfo.unreservedRate[myRI] < maxAllowedRate         | 1   | maxAllowedRate2 =<br>myTopoInfo.unreservedRate[myRI]; | DEPTH  |
|               | _                                                        | 2   | maxAllowedRate2 = maxAllowedRate;                     |        |
| DEPTH         | stqDepth > stqHighWaterMark                              | 3   | stqHighWatermark = stqDepth;                          | LOW    |
|               |                                                          | 4   | _                                                     |        |
| LOW           | stqDepth < stqLowWaterMark                               | 5   | stqLowWatermark= stqDepth;                            | QUEUE  |
|               | _                                                        | 6   | _                                                     |        |
| QUEUE         | myDualQueueStation == TRUE                               | 7   | _                                                     | SINGLE |
|               | _                                                        | 8   | _                                                     | DUAL   |
| SINGLE        | lpNrRate > rateLowThreshold                              | 9   | localCongested = TRUE;                                | START  |
|               | (currentTime - classBAccessTime)<br>>= classBAccessDelay | 10  |                                                       |        |
|               | (currentTime - classCAccessTime)<br>>= classCAccessDelay | 11  | -                                                     |        |
|               | _                                                        | 12  | localCongested = FALSE;                               |        |
| DUAL          | stqDepth > stqLowThreshold                               | 13  | localCongested = TRUE;                                |        |
|               | —                                                        | 14  | localCongested = FALSE;                               |        |

# Table 9.4—CongestionSense state table

Row 9.4-3: Update the STQ occupancy high and low watermark values.

Row 9.4-7: Single-queue congestion conditions are tested.

Row 9.4-8: Dual-queue congestion conditions are tested.

(Optional: The SINGLE state and its conditions are necessary to support single-queue designs.) **Row 9.4-9:** The consumption rate of unreserved traffic exceeds the *rateLowThreshold* limit.

Row 9.4-10: The classB access delay exceeds its specified limit.

Row 9.4-11: The classB access delay exceeds its specified limit.

Row 9.4-12: In the absence of congestion conditions, an uncongested condition is reported.

(Optional: The DUAL state and its conditions are necessary to support dual-queue designs.) **Row 9.4-13:** The secondary transit queue has exceeded its low-threshold congestion-sensing limit. **Row 9.4-14:** In the absence of congestion condition, an uncongested condition is reported.

| 9.2.7 FairnessThrottle state machine                                                                                                                                                                                                | 1<br>2                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| The FairnessThrottle state machine updates appropriate variables based on sensed congestion conditions.                                                                                                                             | 2<br>3<br>4                                                                  |
| 9.2.7.1 FairnessThrottle state machine variables                                                                                                                                                                                    | 5                                                                            |
| addRate<br>addRateCongested<br>addRateCongestedOk<br>addRateOk<br>admissionMethod<br>allowedRateCongested<br>See 9.2.1.2.<br>fwRate<br>See 9.2.1.2.<br>passAddFe<br>passAddFe<br>passAddFeOrStq<br>passAddFeCongested<br>See 9.2.2. | 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 |
| sendD<br>stqDepth<br>See 9.2.2.<br>stqHighThreshold<br>See 9.2.2.                                                                                                                                                                   | 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29                     |
|                                                                                                                                                                                                                                     | 30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38                           |
|                                                                                                                                                                                                                                     | 39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47                           |
|                                                                                                                                                                                                                                     | 48<br>49<br>50<br>51<br>52<br>53<br>54                                       |

#### 9.2.7.2 FairnessThrottle state table

| Current state |                                                                                | M   | Next state                                        |        |
|---------------|--------------------------------------------------------------------------------|-----|---------------------------------------------------|--------|
| state         | condition                                                                      | Row | action                                            | state  |
| START         | admissionMethod == RATE_BASED                                                  | 1   | _                                                 | RATES1 |
|               | _                                                                              | 2   | —                                                 | SPAPE1 |
| RATES1        | addRate < allowedRate &&<br>!EntryInQueue(Q_TX_STQ)                            | 3   | addRateOk = TRUE;                                 | RATES2 |
|               | addRate < allowedRate &&<br>fwRate > addRate &&<br>stqDepth < stqHighThreshold | 4   |                                                   |        |
|               | _                                                                              | 5   | addRateOk = FALSE;<br>addRateCongestedOk = FALSE; | START  |
| RATES2        | addRateCongested < allowedRateCongested                                        | 6   | addRateCongestedOk = TRUE                         | START  |
|               | —                                                                              | 7   | addRateCongestedOk = FALSE                        |        |
| SHAPE1        | passAddFe &&<br>sendD &&<br>passAddFeOrStq;                                    | 8   | addRateOk = TRUE;                                 | SHAPE2 |
|               |                                                                                | 9   | addRateOk = FALSE;<br>addRateCongestedOk = FALSE; | START  |
| SHAPE2        | passAddFeCongested                                                             | 10  | addRateCongestedOk = TRUE;                        | START  |
|               | —                                                                              | 11  | addRateCongestedOk = FALSE;                       |        |

# Table 9.5—FairnessThrottle state table

**Row 9.5-1:** The station uses the rate-based admissions method. **Row 9.5-2:** The station uses the shaper-based admissions method.

(Optional: The RATES and RATE2 states are necessary to support the rate-based admission method.)
Row 9.5-3: Transmit if *addRate* is below its *allowedRate* limit, and no frame is found in the STQ.
Row 9.5-4: Transmit if *addRate* is below its *allowedRate* limit, the STQ traffic rates are sufficient, and the STQ depth is below the *stqHighThreshold*.
Row 9.5-5: Otherwise, fairness eligible transmissions are disallowed.
Row 9.5-6: Cannot transmit if *addRateCongested* has exceeded its *allowedRateCongested* limit.
Row 9.5-7: Transmit if congestion conditions do not apply.
(Optional: The SHAPE and SHAPE2 states are necessary to support the shaper-based admission method.)
Row 9.5-8: Transmit if shaper permissions are disallowed.

**Row 9.5-10:** Transmit if congestion-shaper permissions are provided.

| 9.2.8 FairnessReceive state machine             | 1        |
|-------------------------------------------------|----------|
| 9.2.8.1 FairnessReceive state machine literals  | 2<br>3   |
| MAY STATIONS                                    | 4        |
| MAX_STATIONS<br>See 9.2.2.                      | 5        |
| FULL_RATE                                       | 6<br>7   |
| SCALE                                           |          |
| SCALE<br>See 9.2.1.1.                           | 89       |
| See 9.2.1.1.                                    |          |
| 9.2.8.2 FairnessReceive state machine variables | 10       |
| 9.2.6.2 FaimessReceive state machine variables  | 11       |
|                                                 | 12       |
| minWeight                                       | 13       |
| The minimum weight of other attached stations.  | 14       |
| myEdgeState                                     | 15       |
| myMacAddress                                    | 16       |
| myRI                                            | 17       |
| myProtectMethod                                 | 18       |
| See 9.2.2.                                      | 19       |
| receivedHops                                    | 20       |
| receivedRate                                    | 21       |
| receivedScope                                   | 22       |
| See 9.2.1.2.                                    | 23       |
| ringInfo.totalHopsTx[ri]                        | 24       |
| See 9.2.2.                                      | 25       |
| rxFrame                                         | 26       |
| See 9.2.1.2.                                    | 27       |
| 0.2.9.2 Esimese Dessive state machine reutines  | 28       |
| 9.2.8.3 FairnessReceive state machine routines  | 29       |
|                                                 | 30       |
| Hops(frame)                                     | 31       |
| See 9.2.1.3.                                    | 32       |
| Other(ri)                                       | 33       |
| Min(value1, value2)<br>See 9.2.2.               | 34       |
|                                                 | 35       |
| ScaleDown(value)                                | 36<br>37 |
| ScaleUp(value)                                  |          |
| See 9.2.1.3.                                    | 38<br>39 |
|                                                 | 40       |
|                                                 | 40       |
|                                                 | 41 42    |
|                                                 | 42 43    |
|                                                 | 43       |
|                                                 | 44 45    |
|                                                 | 46       |
|                                                 | 40       |
|                                                 | 47       |
|                                                 | 40       |
|                                                 | 49<br>50 |
|                                                 | 50       |
|                                                 | 52       |
|                                                 | 53       |
|                                                 | 54       |
|                                                 | 51       |

#### 9.2.8.4 FairnessReceive state table

The FairnessReceive state table specification, as specified in Table 9.6.

|       | Current state                                                                                                                 |     | Next state                                                                                                                |       |
|-------|-------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------|-------|
| state | condition                                                                                                                     | Row | action                                                                                                                    | state |
| START | rxFrame.saCompact == myMacAddress &&<br>rxFrame.ri == myRI                                                                    | 1   | receivedRate =<br>ScaleDown(FULL_RATE, SCALE);                                                                            | RETN  |
|       | frame.saCompact==myMacAddress &&<br>myProtectMethod==CENTER_WRAP &&<br>(myEdgeState==INTO_EDGE   <br>myEdgeState== FROM_EDGE) | 2   | receivedHops = MAX_STATIONS;<br>receivedScope = 0;                                                                        |       |
|       | rxFrame.ttl == 1                                                                                                              | 3   |                                                                                                                           |       |
|       | rxFrame.ri == Other(myRI)                                                                                                     | 4   | receivedHops =<br>ringInfo.totalHopsRx[Other(myRI)] + 1                                                                   | FINAL |
|       |                                                                                                                               | 5   | receivedHops = Hops(rxFrame);                                                                                             |       |
| FINAL |                                                                                                                               | 6   | receivedRate =<br>ScaleUp(rxFrame.fairRate, SCALE);<br>receivedScope= Min(MAX_STATIONS,<br>receivedHops + rxFrame.scope); | RETN  |

#### Table 9.6—FairnessReceive state table

Row 9.6-1: If no other station is as congested, no congestion is reported.

Row 9.6-2: If no other wrapped station is as congested, no congestion is reported.

Row 9.6-3: After fairness frame timeouts, no congestion is reported.

Row 9.6-4: An other-side congestion point behaves as though the after-wrap station were congested.

Row 9.6-5: A same-side congestion point communicates the hops to congestion.

Row 9.6-6: The remaining congestion information is captured.

| 9.2.9 FairnessTransmit state machine                               | 1        |
|--------------------------------------------------------------------|----------|
| 9.2.9.1 FairnessTransmit state machine definitions                 | 2 3      |
| MAX_STATIONS                                                       | 4<br>5   |
| See 9.2.2.                                                         | 6        |
| SCALE                                                              | 7        |
| See 9.2.1.1.                                                       | 8        |
| 9.2.9.2 FairnessTransmit state machine variables                   | 9<br>10  |
|                                                                    | 11       |
| hops                                                               | 12       |
| A local copy of hops from the fairness-frame source.               | 13       |
| localFairRate                                                      | 14       |
| lpFwRate                                                           | 15       |
| lpFwRateCongested                                                  | 16       |
| See 9.2.1.2.                                                       | 17       |
| <i>minWeight</i><br>The minimum fairness weight of other stations. | 18<br>19 |
| myMacAddress                                                       | 20       |
| mymuchauress<br>myRI                                               | 20 21    |
| normFairRate                                                       | 21 22    |
| See 9.2.1.2.                                                       | 23       |
| receivedScope                                                      | 24       |
| See 9.2.1.2.                                                       | 25       |
| ringInfo.totalHopsTx[ri]                                           | 26       |
| See 9.2.2.                                                         | 27       |
| rxFrame                                                            | 28       |
| See 9.2.1.2.                                                       | 29       |
| rxRate                                                             | 30       |
| A local copy of the received frame's <i>fairRate</i> value.        | 31       |
| txFrame                                                            | 32       |
| The contents of a transmitted RPR frame.                           | 33<br>34 |
| 9.2.9.3 FairnessTransmit state machine routines                    | 34       |
|                                                                    | 36       |
| Hops(frame)                                                        | 30       |
| See 9.2.1.3.                                                       | 38       |
| ScaleDown(value)                                                   | 39       |
| See 9.2.1.3.                                                       | 40       |
| TransmitFrame(frame)                                               | 41       |
| See 9.2.2.                                                         | 42       |
|                                                                    | 43       |
|                                                                    | 44       |
|                                                                    | 45       |
|                                                                    | 46       |
|                                                                    | 47       |
|                                                                    | 48       |
|                                                                    | 49       |
|                                                                    | 50       |
|                                                                    | 51<br>52 |
|                                                                    | 52       |
|                                                                    | 54       |

#### 9.2.9.4 FairnessTransmit state table

The transmission of fairness frames involves updating congestion-point parameters, as specified in Table 9.7.

| Current state |                                                                                | wo | Next state                                                                                              |       |
|---------------|--------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------|-------|
| state         | condition                                                                      | Rc | action                                                                                                  | state |
| START         |                                                                                | 1  | normFairRate =<br>ScaleDown(localFairRate, SCALE);<br>rxRate= rxFrame.fairRate;<br>hops= Hops(rxFrame); | FIRST |
| FIRST         | rxRate >= normFairRate                                                         | 2  | txFrame.ttl = MAX_STATIONS;                                                                             | FINAL |
|               | hops <= ringInfo.totalHopsTx[myRI] &&<br>rxRate >= lpFwRateCongested/minWeight | 3  | txFrame.ri = myRI;<br>txFrame.saCompact = myMacAddress;<br>txFrame.fairRate = normFairRate;             |       |
|               | rxRate >= lpFwRate/minWeight                                                   | 4  | txFrame.scope = receivedScope;                                                                          |       |
|               | receivedScope == 0                                                             | 5  |                                                                                                         |       |
|               |                                                                                | 6  | txFrame = rxFrame;<br>txFrame.ttl = rxFrame.ttl - 1;                                                    |       |
| FINAL         |                                                                                | 7  | TransmitFairnessFrame(txFrame);                                                                         | RETN  |

#### Table 9.7—FairnessTransmit state table

Row 9.7-1: Local values are precomputed for state machine clarity.

Row 9.7-2: If this station is more congested, this station's congestion level is reported.

**Row 9.7-3:** A closed-ring station becomes a tail if the *fairRate* received from the downstream neighbor is greater than or equal to the weight-adjusted rate of fairness eligible traffic transiting both the local station and the head of the congestion domain (*lpFwRateCongested*).

**Row 9.7-4:** If the ring is wrapped between the head station and the local station, the *lpFwRateCongested* does not maintain an accurate count of frames transiting both the local station and the head station. The *lpFwRate* is known to be larger than *lpFwRateCongested* as it includes all fairness eligible traffic transiting the local station. This value is taken as conservative alternative to the use of the *normLpFwRateCongested*. **Row 9.7-5:** If the local station's fairness frame has returned, a zero-value *scope* tags the suspect information. **Row 9.7-6:** Otherwise, the reported congestion information is passed upstream.

Row 9.7-7: The fairness frame is readied for transmission.

| 9.2.10 MultichokeTransmit state machine                                                                                      | 1<br>2      |
|------------------------------------------------------------------------------------------------------------------------------|-------------|
| At the expiration of a <i>reportingInterval</i> , the local station broadcasts a rate report to all stations on the ringlet. | 2<br>3<br>4 |
| 9.2.10.1 MultichokeTransmit state machine definitions                                                                        | 5<br>6      |
| FULL_RATE                                                                                                                    | 7           |
| See 9.2.1.1.                                                                                                                 | 8           |
| MAX_STATIONS                                                                                                                 | 9           |
| See 9.2.2.                                                                                                                   | 10          |
|                                                                                                                              | 11          |
| 9.2.10.2 MultichokeTransmit state machine variables                                                                          | 12          |
| advertisementInterval                                                                                                        | 13<br>14    |
| See 9.2.1.2.                                                                                                                 | 14          |
| currentTime                                                                                                                  | 15          |
| frame                                                                                                                        | 10          |
| See 9.2.2.                                                                                                                   | 18          |
| localCongested                                                                                                               | 10          |
| See 9.2.1.2.                                                                                                                 | 20          |
| myMacAddress                                                                                                                 | 20          |
| mymuchauress<br>myRI                                                                                                         | 21          |
| See 9.2.2.                                                                                                                   | 22          |
| normFairRate                                                                                                                 | 23<br>24    |
| See 9.2.1.2.                                                                                                                 | 24          |
| reportCoef                                                                                                                   | 25          |
| A value indicating the number of <i>advertisingIntervals</i> that elapse between the sending of                              | 20          |
| successive MCFFs.                                                                                                            | 28          |
| Range: [8, 512]                                                                                                              | 20<br>29    |
| Default: 10                                                                                                                  | 30          |
| reportedTime                                                                                                                 | 31          |
| The time at the start of the current multichoke-fairness report interval.                                                    | 32          |
| ringInfo.multichokeUser[ri]                                                                                                  | 33          |
| See 9.2.2.                                                                                                                   | 34          |
|                                                                                                                              | 35          |
| 9.2.10.3 MultichokeTransmit state machine routines                                                                           | 36          |
|                                                                                                                              | 37          |
| MultichokeInd()                                                                                                              | 38          |
| See 9.2.1.3.                                                                                                                 | 39          |
| Other(ri)                                                                                                                    | 40          |
| ScaleDown(value)                                                                                                             | 41          |
| See 9.2.1.3.                                                                                                                 | 42          |
| TransmitFrame(frame)                                                                                                         | 43          |
| See 9.2.2.                                                                                                                   | 44          |
|                                                                                                                              | 45          |
|                                                                                                                              | 46          |
|                                                                                                                              | 47          |
|                                                                                                                              | 48          |
|                                                                                                                              | 49          |
|                                                                                                                              | 50          |
|                                                                                                                              | 51          |
|                                                                                                                              | 52          |
|                                                                                                                              | 53          |
|                                                                                                                              | 54          |

#### 9.2.10.4 MultichokeTransmit state table

|       | Current state                                                                      |     | Next state                                                                                                                                                          |       |  |
|-------|------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| state | condition                                                                          | Row | action                                                                                                                                                              | state |  |
| START | <pre>(currentTime - reportedTime) &gt;=   reportCoef * advertisementInterval</pre> | 1   | reportedTime = currentTime;                                                                                                                                         | FIRST |  |
|       | _                                                                                  | 2   | _                                                                                                                                                                   | START |  |
| FIRST | !ringInfo.multichokeUser[myRI]                                                     | 3   | _                                                                                                                                                                   | START |  |
|       | localCongested                                                                     | 4   | frame.fairRate = normFairRate;                                                                                                                                      | FINAL |  |
|       |                                                                                    | 5   | frame.fairRate =<br>ScaleDown(FULL_RATE, SCALE);                                                                                                                    |       |  |
| FINAL |                                                                                    | 6   | frame.ffType = MULTI_CHOKE;<br>frame.saCompact = myMacAddress;<br>frame.ttl = MAX_STATIONS;<br>frame.ri = Other(myRI);<br>TransmitFrame(frame);<br>MultiChokeInd(); | START |  |

#### Table 9.8—MultichokeTransmit state table

Row 9.8-1: Row 9.8-2: Operations are performed at the end of each *reportingInterval*.

**Row 9.8-3:** Rate reporting is suppressed if no station client uses the multi-choke fairness information. **Row 9.8-4:** A congested station reports its locally computed *fairRate* to all stations on the ringlet. **Row 9.8-5:** An uncongested station reports the FULL\_RATE to all stations on the ringlet.

Row 9.8-6: Other fairness frame information is supplied.

| 1  |  |  |  |
|----|--|--|--|
| 2  |  |  |  |
| -  |  |  |  |
| 3  |  |  |  |
| 4  |  |  |  |
| 5  |  |  |  |
|    |  |  |  |
| 6  |  |  |  |
| 7  |  |  |  |
|    |  |  |  |
| 8  |  |  |  |
| 9  |  |  |  |
|    |  |  |  |
| 10 |  |  |  |
| 11 |  |  |  |
| 12 |  |  |  |
|    |  |  |  |
| 13 |  |  |  |
| 14 |  |  |  |
| 15 |  |  |  |
|    |  |  |  |
| 16 |  |  |  |
| 17 |  |  |  |
|    |  |  |  |
| 18 |  |  |  |
| 19 |  |  |  |
| 20 |  |  |  |
|    |  |  |  |
| 21 |  |  |  |
| 22 |  |  |  |
| 23 |  |  |  |
|    |  |  |  |
| 24 |  |  |  |
| 25 |  |  |  |
|    |  |  |  |
| 26 |  |  |  |
| 27 |  |  |  |
| 28 |  |  |  |
|    |  |  |  |
| 29 |  |  |  |
| 30 |  |  |  |
|    |  |  |  |
| 31 |  |  |  |
| 32 |  |  |  |
| 33 |  |  |  |
|    |  |  |  |
| 34 |  |  |  |
| 35 |  |  |  |
| 36 |  |  |  |
|    |  |  |  |
| 37 |  |  |  |
| 38 |  |  |  |
| 39 |  |  |  |
|    |  |  |  |
| 40 |  |  |  |
| 41 |  |  |  |
| 42 |  |  |  |
|    |  |  |  |
| 43 |  |  |  |
| 44 |  |  |  |
|    |  |  |  |
| 45 |  |  |  |
| 46 |  |  |  |
| 47 |  |  |  |
|    |  |  |  |
| 48 |  |  |  |
| 49 |  |  |  |
| 50 |  |  |  |
|    |  |  |  |
| 51 |  |  |  |
| 52 |  |  |  |
|    |  |  |  |
| 53 |  |  |  |
| 54 |  |  |  |