
IEEE Draft P802.17 jhs_clause9_01.pdf
September 12, 2002

Copyright © 2002 IEEE. All rights reserved. - 1 -
This is not an approved IEEE Standard.

9. MAC fairness 1

9.1 Overview 2

9.1.1 Scope 3
This clause defines the fairness algorithm for RPR MACs. The MAC uses the algorithm 4
to enforce fairness among stations on the ring. The RPR fairness algorithm RPR-FA 5
handles the fairness eligible traffic (Class B and Class C traffic). 6

9.1.2 Goals and objectives 7
The fairness protocol has the following objectives: 8

a) Source-based weighted fairness—on any given segment on the ringlet, the 9
available bandwidth is allocated to each station in proportion to its relative 10
weight. For example, if every station has an equal weight, then the available 11
bandwidth on the segment should be shared equally by all stations. On the other 12
hand, if one station has a higher weight, the bandwidth allocated to that station 13
should be in proportion to the station’s weight divided by the sum of the weights 14
of all the active stations. 15

b) Fast response time—In order to ensure maximum ring bandwidth utilization and 16
to ensure that the protocol is responsive to instantaneous changes in traffic load, it 17
must have a fast response time. 18

c) High bandwidth utilization on the ring—the protocol should be able to achieve 19
very high levels of bandwidth utilization even under heavy load approaching 20
100% of the ring capacity. 21

d) Scalability—the protocol should be scalable and should be able to function 22
predictably for all ringlet speeds and ring diameters allowed by this standard. 23

9.1.3 Relationship to other clauses 24
The RPR-FA is implemented within a control entity called the Fairness Control Unit 25
(FCU) located in the MAC Control Sublayer, as described in Clause 5. 26

9.2 Acronyms 27
This clause contains the following acronyms: 28
 29
FA Fairness Algorithm 30
FCU Fairness Control Unit 31
MTU Maximum Transmission Unit 32
RTT Round Trip Time 33
FCM Fairness Control Message 34

9.3 Variables and terminology used 35
This clause contains the following definitions and variables in alphabetical order: 36

IEEE Draft P802.17 jhs_clause9_01.pdf
September 12, 2002

Copyright © 2002 IEEE. All rights reserved. - 2 -
This is not an approved IEEE Standard.

9.3.1 calculation round 1
The information collected in the information round is used by all stations in the 2
calculation round. This round is where the fair rates are calculated by the fairness 3
algorithm. Each station starts its new cycle after it has done its fair rate calculation in this 4
round. 5

9.3.2 cycle 6
The intervals over which the fairness algorithm schedules and allocates the fair rates. 7

9.3.3 designated station 8
The station that initiates the information rounds, and therefore also the new cycles. 9

9.3.4 destinationTraffic 10
This array holds information about the local traffic load to each destination. It is a local 11
array, i.e., each station holds one for each ringlet. The station fills this array during the 12
information round, it is used during the calculation round. 13

9.3.5 estimator 14
Array holding the current estimated traffic to each destination 15

9.3.6 greedy mode 16
Source-destination flows not flowing over one or more bottleneck links are in greedy 17
mode, i.e., free access in the current cycle. See also “reservation mode”. 18

9.3.7 information round 19
A round trip of the fairness control message just before the start of a new cycle, with the 20
goal to collect information about the traffic demand on each link. This round is started by 21
a designated station. 22

9.3.8 linkTraffic 23
This array holds information about the local traffic load on each link. It is a local array, 24
i.e., each station holds one for each ringlet. The station fills this array during the 25
information round, it is used during the calculation round. 26

9.3.9 numLinks 27
The number of links on the ringlet (equals numStation). 28

9.3.10 numStations 29
The number of stations on the ringlet (equals numLinks). 30

9.3.11 reservation mode 31
Flows not in greedy mode are in reservation mode, i.e., they flow over one or more 32
bottleneck links. 33

IEEE Draft P802.17 jhs_clause9_01.pdf
September 12, 2002

Copyright © 2002 IEEE. All rights reserved. - 3 -
This is not an approved IEEE Standard.

9.3.12 table 1
Table is an array in the FCM that holds the following information for each link: 2

• demand: Total demand on the link 3
• remainingCap: Capacity available on the link 4

9.3.13 useSourceFairness 5
The fairness algorithm uses source fairness when this variable is set to true. Flow based 6
fairness is used when this variable is set to false. 7

9.4 MAC fairness operation 8
The fairness algorithm implemented within the FCU consists of the following functions: 9

a) sourcing and consuming fairness messages 10
b) calculation of fair rates for each source destination pair 11
c) determining the state for each flow: reserved or free access 12

 13
Each station is assigned a weight, which allows the user to allocate more ring bandwidth 14
to certain stations as compared with other stations. 15
 16
The FA uses a proactive method that assigns fair rates to each source-destination flow on 17
a ringlet. It can be used for source-fairness as well as source-destination (or flow) 18
fairness. 19
The algorithm uses three rounds of the FCM for each cycle. The first round is used for 20
collecting the traffic demand for each source destination pair, and in the second round 21
each station computes its own fair rate based on the information in the fairness message. 22
Instead of using all flow information on the ringlet, the algorithm uses aggregate flows, 23
keeping the fairness message small and the algorithm scalable. The third round is used to 24
inform all stations about the available bandwidth that still can be used for greedy traffic. 25
 26
The control information needed to accomplish this, flows in the same direction (i.e. 27
ringlet) as the data flow, which simplifies the protocol in a single ring topology and any 28
configuration of multiple rings. 29
 30

9.4.1 FCM Processing 31

9.4.1.1 Fairness Control Message 32
The designated station creates fairness control messages. This message travels three 33
rounds, thereby visiting each station on the ringlet three times. Apart from the normal 34
packet header fields, the FCM contains a round counter (2 bits) and two arrays, each of 35
size numLinks (the number of links on the ringlet), one for the total traffic demand on all 36
links for fairness eligible traffic, and one array for the remaining capacity (total capacity 37
minus provisioned traffic) on all links (Figure 1). 38
 39

IEEE Draft P802.17 jhs_clause9_01.pdf
September 12, 2002

Copyright © 2002 IEEE. All rights reserved. - 4 -
This is not an approved IEEE Standard.

Summed
Priority

Summed
Priority

link:

link: numLink

link:

2 2

Available
Capacity

Summed
Traffic Load

link: 0

link: numLink

link: 1

2 bytes 2 bytes

 1
Figure 1. Table structure contained in the FCM 2

 3

9.4.1.2 Overview 4

R.Cap
3.0e8
3.0e8
…

Link Σ F_M
0 2.3e8
1 1.7e4
… …

Transmit Buffers

Fast Transmit
Buffer

Output Stream

Control Packet

Fairness
Algorithm Transmit Scheduling

R.Cap
3.0e8
3.0e8
…

Link Σ T
0 2.3e8
1 1.7e4
… …

Transmit Buffers

Output Stream

Fairness Control
Message

Fairness
Algorithm Transmit Scheduling

 5
Figure 2. The fairness control message is input to the fairness algorithm 6

 7
The designated station holds a timer for each ringlet that fires every cycle interval. At this 8
event the designated station creates a fairness control message, initializes it and starts the 9
first round of this message. In this “information gathering” round each station writes the 10
amount of bytes that are available for its outgoing link, in the remaining capacity field. 11
Additionally it also adds its own flows (information comes again from the waiting traffic 12
demand) to the sum of all flows on all links. Once the control message arrives back at the 13
designated station, the control message starts its second round where each station 14
performs the fairness algorithm and immediately can start sending its fair share. In this 15
second round the stations can modify the contents of the FCM. The third round is used to 16
notify all stations about the amount of remaining capacity that can be used for free-access 17
traffic. The control message is taken from the ringlet at the time it returns for the third 18
time at the designated station. 19
Since the control message is relative small in size, it produces a small overhead even for 20
short calculation intervals. 21
 22

IEEE Draft P802.17 jhs_clause9_01.pdf
September 12, 2002

Copyright © 2002 IEEE. All rights reserved. - 5 -
This is not an approved IEEE Standard.

WAIT: Cycle TimeOut
yes

no

Create FCM
(information round)
send to neighbor

WAIT: Cycle TimeOut
yes

no

Create FCM
(information round)
send to neighbor

 1
Figure 3. Cycle timeout for the designated station 2

WAIT
Next FCM available

yes

no

Information
round?

Add info and
forward FCM

yes

Calculation
round?

Calculate fair rates
and

start new cycle,
forward FCM

yes

no

Update Remaining
bandwidth and
forward FCM

no

WAIT
Next FCM available

yes

no

Information
round?

Add info and
forward FCM

yes

Calculation
round?

Calculate fair rates
and

start new cycle,
forward FCM

yes

no

Update Remaining
bandwidth and
forward FCM

no

 3
Figure 4. Flow diagram for non-designated stations 4

Each station starts its new cycle directly after calculation of the fair rates, i.e., stations 5
can start transmission of the packets according to the just calculated fair rates. 6
The flow diagram for designated stations (Figure 5) is similar to the diagram for non-7
designated stations. The difference is that in the designated station the transition from one 8
round to the other takes place. Additionally, the FCM will be deleted after the remaining 9
capacity round. 10

 11

IEEE Draft P802.17 jhs_clause9_01.pdf
September 12, 2002

Copyright © 2002 IEEE. All rights reserved. - 6 -
This is not an approved IEEE Standard.

Information
round?

Calculation
round?

WAIT: Next
FCM available

yes

no

Calculate
fair rates,

forward FCM

yes

Update Remaining
bandwidth and
forward FCM

yes

no

Delete FCM

no

(Start of calculation round)

(Start of remaining capacity round)

Information
round?

Calculation
round?

WAIT: Next
FCM available

yes

no

Calculate
fair rates,

forward FCM

yes

Update Remaining
bandwidth and
forward FCM

yes

no

Delete FCM

no

(Start of calculation round)

(Start of remaining capacity round)

 1
Figure 5. Flow diagram for the designated station 2

 3
 4
 5

 6

+/- 1 RTT+/ - 1 RTT

Cycle_timeOut

Information Round:
Send FCM to
neighbor

Events: FCM arrives:

Calculation Round:
Send FCM to
neighbor

Actions:

Time

FCM arrives:

1 Cycle

+/- 1 RTT

FCM arrives:

Delete FCMRem. Cap. Round
Send FCM to
neighbor

+/- 1 RTT+/ - 1 RTT

Cycle_timeOut i

Information Round:
Send FCM to
neighbor

Events: FCM arrives:

Calculation Round:
Send FCM to
neighbor

Actions:

Time

FCM arrives:

+/- 1 RTT

FCM arrives:

Delete FCMRem. Cap. Round
Send FCM to
neighbor

Cycle_timeOut i+1

CycleInterval

7
 8

Figure 6. Time diagram for the designated station 9
 10

IEEE Draft P802.17 jhs_clause9_01.pdf
September 12, 2002

Copyright © 2002 IEEE. All rights reserved. - 7 -
This is not an approved IEEE Standard.

9.4.2 Information collection round 1
The fairness algorithm is a proactive mechanism that uses the traffic demand to schedule 2
the traffic in the next cycle. Ideally, the information about the waiting traffic demand 3
comes from the MAC client. The rate will be estimated (Section 9.4.2.2), for clients 4
unable to tell their traffic demand. 5

9.4.2.1 Getting the queued traffic demand 6
Upon request, the MAC-client notifies the MAC about the amount of bytes currently 7
waiting in the destination queues. If queues are nearly or completely full, the MAC uses 8
rate estimation, the topic of the next section. 9

9.4.2.2 Rate estimation 10
Two arrays are used to estimate the traffic flows: Estimated[] holds the current estimation 11
to all destinations, and Measured[] holds the total amount of fairness eligible traffic 12
sourced to each destination in the current cycle. 13
At the end of each cycle, all nodes perform the following update of the Estimated array: 14
If there are no packets to transmit for a destination d, then Estimated[d] is set to 15
Measured[d]. Else, we take the maximum of three values: the previous estimation, the 16
measured value and a constant value B. This maximum multiplied by a constant A gives 17
us the new estimation: Estimated[d] = A* max(Estimated[d], Measured[d], B). 18
The constants A and B control a trade-off between throughput and response time during 19
transitions. 20

9.4.2.3 Weights 21
As long as there are no bottlenecks, weights are not used. When there are bottlenecks 22
however, the estimated or real traffic demand is multiplied by the weight of each station. 23
This value will be written in the FCM by each station in the information round. 24

9.4.2.4 Source and flow fairness 25
The fairness algorithm is a flow or source-destination fairness algorithm. Source fairness 26
can be easily achieved with the same algorithm by limiting the sum of all flows leaving 27
each station to the link capacity. These adjusted values are then written in the FCM. 28
 29

9.4.3 Code 30
This section describes two functions: cycleTimeOut and handleFCM. CycleTimeOut is 31
executed at each cycle timeout at the designated station. It generates a fairness control 32
message and passes the message to the handleFCM function. This function is also 33
executed at each station when a fairness message arrives. 34
 35
void cycleTimeOut(){ 36
 FairnessControlMessage *fcm = new FairnessControlMessage; 37
 fcm->round = -1; 38
 handleFCM(fcm); 39
} 40
 41
void handleFCM(FairnessControlMessage *fcm) 42

IEEE Draft P802.17 jhs_clause9_01.pdf
September 12, 2002

Copyright © 2002 IEEE. All rights reserved. - 8 -
This is not an approved IEEE Standard.

{ 1
 double *allowForDest; 2
 int i; 3
 4
 if (designatedStation()){ 5
 fcm->round++; 6
 if (fcm->round == 3){ 7
 delete fcm; 8
 return; 9
 } 10
 } 11
 12
 switch (fcm->round){ 13
 case 0: // information round 14
 infoRound(fcm); 15
 break; 16
 case 1: // calculation round 17
 allowForDest= new double[getSize()]; 18
 makeFair(fcm,allowForDest); 19
 for (i=0;i<getSize();i++){ 20
 setBitsAllow(i,allowForDest[i]); 21
 } 22
 delete allowForDest; 23
 break; 24
 case 2: // update remaining capacity round 25
 for (i=0;i<getSize();i++){ 26
 remainingCap[i] = fcm->table.available[i]; 27
 } 28
 break; 29
 } 30
 31
 // schedule the forwarding 32
 forwardFairnessControlMessage(fcm); 33
} 34
 35
 36
bool designatedStation(){ 37
 // returns true if this station is the designated station 38
 // on the current ringlet, false otherwise; 39
} 40
 41
 42
int getSize(){ 43
 // returns the number of stations on the ringlet; 44
} 45
 46
 47
void infoRound(…){ 48
 // see Section 9.4.3.1 49
} 50
 51
 52
void makeFair(…){ 53
 // see section 9.4.3.2 54
} 55
 56
 57
void setBitsAllow(int dst,double value){ 58
 // Sets the amount of bytes that can be transmitted by this station 59
 // to destination dst. 60
} 61
 62

IEEE Draft P802.17 jhs_clause9_01.pdf
September 12, 2002

Copyright © 2002 IEEE. All rights reserved. - 9 -
This is not an approved IEEE Standard.

 1
void forwardFairnessControlMessage(FairnessControlMessage *fcm){ 2
 // function that forwards the fcm to the next downstream neighbor as 3
 // quick as possible 4
} 5
 6
 7

9.4.3.1 Information Round 8
Each station in the information round executes the following function. The only argument 9
is the fairness control message. 10
 11
void infoRound(FairnessControlMessage *fcm) 12
{ 13
 double sourceFairFactor = 1.0; 14
 int i,dest,link; 15
 16
 // set the available bandwidth to 100% 17
 fcm->table.available[atStationID()]=getCycleMaxLoad(); 18
 19
 20
 // make a copy of the current fill sizes 21
 for (i=0;i<getSize();i++) { 22
 destinationTraffic[i] = min(getLoadForDestination(i), getCycleMaxLoad()); 23
 } 24
 25
 if (useSourceFairness) 26
 sourceFairFactor = calculateSourceFairFactor(); 27
 28
 // now loop through all links and add the amount of bytes 29
 link = downStreamLinkId(); 30
 for (i=0;i<getSize();i++){ 31
 32
 // now find all destinations over "link" 33
 dest = stationIdAtEndOfLink(link); 34
 while (dest!=atStationID()){ 35
 double Iwant = min(getCycleMaxLoad(),getLoadForDestination(dest)); 36
 fcm->table.demand[link] += Iwant * sourceFairFactor; 37
 linkTraffic[link] = fcm->table.demand[link]; 38
 dest = next(dest); 39
 } 40
 link = next(link); 41
 } 42
} 43
 44
 45
double getCycleMaxLoad(){ 46
 // return the maximum number of bits that can be transmitted on 47
 // the outgoing link in one cycle: 48
 // e.g. return cycleInterval * getLinkSpeed(); 49
} 50
 51
 52
long getLoadForDestination(int dest){ 53
 // see section 9.4.2.1 54
 double MAXpossible = getCycleMaxLoad(); 55
 56
 if (isQueueEmpty(dest)) 57
 estimator[dest] = getBytesSend(dest); 58
 else 59
 estimator[dest] = A*max(estimator[dest], max(getBytesSend(dest), B)); 60

IEEE Draft P802.17 jhs_clause9_01.pdf
September 12, 2002

Copyright © 2002 IEEE. All rights reserved. - 10 -
This is not an approved IEEE Standard.

 1
 if (estimator[dest]>MAXpossible/2) estimator[dest]=MAXpossible/2; 2
 3
 return estimator[dest]; 4
} 5
 6
bool isQueueEmpty(int dest){ 7
 // returns true iff the MAC client has no fairness eligible traffic 8
} 9
 10
int getBytesSend(int dest){ 11
 // returns the amount of bytes sources to destination dest in the 12
 // current cycle 13
} 14
 15
 16
int stationIdAtEndOfLink(int lnk){ 17
 // function that returns the id of the station at the end of link “lnk” 18
 // on the current ringlet 19
} 20
 21
 22
double calculateSourceFairFactor(){ 23
 // this function computes a factor that is used by the fairness algorithm 24
 // to limit the flows of a single station. Limiting all flows from 25
 // one station to the link capacity, results in source fairness (in the 26
 // used fairness algorithm) 27
 28
 double MAXpossible = getCycleMaxLoad(); 29
 double ret = 1.0; 30
 double total = 0; 31
 int i; 32
 for (i=0;i<getSize();i++) 33
 total += min(MAXpossible,getLoadForDestination(i)); 34
 35
 if (total>MAXpossible) 36
 ret = MAXpossible / total; 37
 38
 return ret; 39
} 40
 41

9.4.3.2 Calculation Round 42
 43
void makeFair(FairnessControlMessage *fcm, double *allowForDest){ 44
 // This is the function that computes the fair rates for the station 45
 // where this function is being called. The FCM is input to this function, 46
 // allowForDest is the resulting array with the fair amount of bytes 47
 // for each destination. 48
 // Note that the contents of the fcm can be modified by this function. 49
 50
 int strongestBottleNeckLink,i; 51
 bool *bottleNeckDone = new bool[getSize()];// array indicating whether or not 52
 // a bottleneck link is processed 53
 54
 // initiliaze: 55
 for (i=0; i<getSize(); i++) { 56
 bottleNeckDone[i] = false; 57
 allowForDest[i] = 0; 58
 } 59
 60

IEEE Draft P802.17 jhs_clause9_01.pdf
September 12, 2002

Copyright © 2002 IEEE. All rights reserved. - 11 -
This is not an approved IEEE Standard.

 do { 1
 // look for the strongest bottleneck where this station is involved... 2
 strongestBottleNeckLink=getStrongestValidBottleneck(bottleNeckDone,fcm); 3
 4
 if (strongestBottleNeckLink!=-1){ 5
 6
 // yes we are involved in a bottleneck 7
 bottleNeckDone[strongestBottleNeckLink] = true; 8
 9
 // ok, reduce all flows over this bottleneck 10
 // we start at the destination just over the bottleneck 11
 // and loop through all destinations from there on 12
 int toDest = stationIdAtEndOfLink (strongestBottleNeckLink); 13
 while (toDest != atStationID()){ 14
 // do I have something for this destination? 15
 if (destinationTraffic[toDest]>0){ 16
 double ratio = fcm->table.ratio(strongestBottleNeckLink); 17
 double oldValue = destinationTraffic[toDest]; 18
 double newValue = oldValue/ratio; 19
 destinationTraffic[toDest] = 0; 20
 allowForDest[toDest] = newValue; 21
 22
 // now update the table in the control message 23
 // and our local linkTraffic table accordingly. 24
 // all links between this station and toDest need 25
 // to be updated. 26
 double diff = oldValue-newValue; 27
 int link = downStreamLinkId(); 28
 while (link != downStreamLinkIdAtStation(toDest)){ 29
 fcm->table.available[link] -= newValue; 30
 fcm->table.demand[link] -= oldValue; 31
 linkTraffic[link] -= diff; 32
 link = next(link); 33
 } 34
 } 35
 toDest = next(toDest); 36
 } 37
 } 38
 } while (strongestBottleNeckLink!=-1); // as long as there are bottlenecks 39
 40
 // copy remeainig traffic load since this 41
 // traffic is not involved in any bottleneck 42
 for (i=0; i<getSize(); i++) allowForDest[i] += destinationTraffic[i]; 43
 44
 delete bottleNeckDone; 45
} 46
 47
 48
 49
int getStrongestValidBottleneck(bool *done, FairnessControlMessage *fcm){ 50
 // Returns the id of the strongest bottleneck, that is not yet 51
 // processed (done). 52
 // Returns –1 if no such bottlenecks exists. 53
 54
 int i,ret =-1; 55
 for (i=0;i<getSize();i++) 56
 if (!done[i] && fcm->table.isBottleNeck(i) && 57
 ((ret==-1) || (fcm->table.ratio(ret)<fcm->table.ratio(i)))) 58
 ret = i; 59
 return ret; 60
} 61
 62
 63

IEEE Draft P802.17 jhs_clause9_01.pdf
September 12, 2002

Copyright © 2002 IEEE. All rights reserved. - 12 -
This is not an approved IEEE Standard.

 1
int downStreamLinkId(){ 2
 // Returns the downstream link id at the current station on the 3
 // current ringlet 4
} 5
 6
 7
int downStreamLinkIdAtStation(int s){ 8
 // Returns the downstream link id at station “s” on the current ringlet 9
} 10
 11
 12
int atStationID(){ 13
 // Returns the station ID of the station 14
} 15
 16
 17
bool table::isBottleNeck(int lnk){ 18
 // We have a bottleneck if the demand is larger than what is available, 19
 // and there is a positive non-null demand: 20
 return (demand[lnk]>0) && (demand[lnk]>available[lnk]); 21
} 22
 23
 24
double table::ratio(int lnk){ 25
 // Returns the ration demand/available for the specified link 26
 // To avoid division be zero, a very large constant “BIG” is 27
 // returned if available equals zero. 28
 29
 if (available[lnk]==0) return BIG; 30
 else return demand[lnk]/available[i]; 31
} 32
 33

9.5 Example 34
This section gives an example of the operation of the algorithm. For simplicity a single 35
ringlet is used with one priority class and only 4 stations. Furthermore, the following 36
assumptions are made: 37

• 100 units (e.g. bytes) can be transmitted on each link, in one cycle 38
• Station 0 is the designated station 39
• Weights are all 1 40
• The traffic demand from and to each station is shown in Figure 7. 41

 42
 43

s0 s1 s2 s3

20

80

90 90

30

80 80

30

60

s0 s1 s2 s3

20

80

90 90

30

80 80

30

60

 44
Figure 7. Traffic demand 45

IEEE Draft P802.17 jhs_clause9_01.pdf
September 12, 2002

Copyright © 2002 IEEE. All rights reserved. - 13 -
This is not an approved IEEE Standard.

9.5.1 Information round 1
The information round starts at the designated station 0 after receiving the cycle timeout. 2
It creates a new FCM and adds all of its flows to the summed traffic fields. The 3
remaining capacity is set to full capacity (100). 4
 5
Link Summed Traffic Remaining Capacity
0 20+80=100 100
1 80 100
2 80 100
3 - 100
Station 0 forwards this FCM to station 1, which also adds it own flows to the summed 6
traffic fields. 7
 8
Link Summed Traffic Remaining Capacity
0 100 100
1 80+30 =110 100
2 80+30 =110 100
3 - 100
FCM leaving station 1 9
 10
 11
Similar for station 2 and station 3: 12
Link Summed Traffic Remaining Capacity
0 100 100
1 110 100
2 110+60 = 170 100
3 - 100
FCM leaving station 2 13
 14
Link Summed Traffic Remaining Capacity
0 100+90 = 190 100
1 110 100
2 170 100
3 90 100
FCM leaving station 3 15
 16
 17

9.5.2 Calculation round 18
A new round is started whenever the designated station receives the FCM from its 19
upstream neighbor, in the example the new round will be the calculation round. This is 20
the round where each station calculates its own fair rates and immediately can start to 21
transmit these fair rates. 22
 23

IEEE Draft P802.17 jhs_clause9_01.pdf
September 12, 2002

Copyright © 2002 IEEE. All rights reserved. - 14 -
This is not an approved IEEE Standard.

The highest bottleneck where station 0 is involved is at link 0. All flows leaving station 0 1
over this bottleneck will be reduced by a factor 100/190. For flow 0->1 with a demand of 2
20, the assigned value will become 20*100/190 = 10.5. 3
The FCM has to be updated to reflect this: The summed traffic fields involved should be 4
decreased by 20, which is in this case only the field for link 0. Since 10.5 is assigned to 5
this flow, the remaining capacity fields should be decreased by 10.5. 6
The new FCM: 7
 8
Link Summed Traffic Remaining Capacity
0 190-20=170 100-10.5=89.5
1 110 100
2 170 100
3 90 100
Station 0 still has a flow over a bottleneck, which is still link 0. Flow 0->3 with a demand 9
of 80 will get a value of 80 * 89.5 / 170 = 42.1. 10
 11
The new FCM: 12
Link Summed Traffic Remaining Capacity
0 170-80 = 90 89.5-42.1=47.4
1 110-80 = 30 100-42.1=57.9
2 170-80=90 100-42.1=57.9
3 90 100
 13
Equals: 14
 15
Link Summed Traffic Remaining Capacity
0 90 47.4
1 30 57.9
2 90 57.9
3 90 100
FCM leaving station 0 16
 17
 18
Station 1 follows the same procedure: highest bottleneck is at link 2, the assigned value 19
will be 30 * 57.9 / 90 = 19.3. 20

 21
Link Summed Traffic Remaining Capacity
0 90 47.4
1 30-30=0 57.9-19.3=38.6
2 90-30=60 57.9-19.3=38.6
3 90 100
FCM leaving station 1 22
 23
 24
Station 2: flow gets 60 * 38.6 / 60 = 38.6 25
Link Summed Traffic Remaining Capacity

IEEE Draft P802.17 jhs_clause9_01.pdf
September 12, 2002

Copyright © 2002 IEEE. All rights reserved. - 15 -
This is not an approved IEEE Standard.

0 90 47.4
1 0 38.6
2 60-60=0 38.6-38.6=0
3 90 100
FCM leaving station 2 1
 2
 3
 4
Station 3: flow gets 90 * 47.4/90 =47.4 5

 6
Link Summed Traffic Remaining Capacity
0 90-90=0 47.4-47.4=0
1 0 38.6
2 0 0
3 90-90=0 100-47.4=52.6
FCM leaving station 3 7
 8
 9
All flows are now assigned, as can be seen in the following figure: 10

s0 s1 s2 s3

20->10.5

80->42.1

90->47.4

30->19.3

60->38.6

80->42.1 80->42.1

90->47.4

30->19.3

100% 61.4% 100% 47.4% Link Utilizations0 s1 s2 s3

20->10.5

80->42.1

90->47.4

30->19.3

60->38.6

80->42.1 80->42.1

90->47.4

30->19.3

100% 61.4% 100% 47.4% Link Utilization

 11
Figure 8. Result after the calculation round 12

 13

9.5.3 Remaining Capacity Round 14
The purpose of this round is to inform all station on the ringlet about the amount of 15
capacity available on all links. This is used for greedy traffic. 16
 17
Link Summed Traffic Remaining Capacity
0 0 0
1 0 38.6
2 0 0
3 0 52.6
 18
When the FCM returns back to the designated station, the FCM will be deleted. The timer 19
in the designated station will trigger the start of the next cycle. 20

