Details of the IKN-Fairness Mechanism: CQMA

Jon Schuringa, Günter Remsak, Harmen R. van As September 2002

Contents

- Fairness operation
 - Access
 - Reservation
- Rate estimation
- Conclusions

- Goals:
 - Demonstrate CQMA operation
 - Present the main ideas in jhs_clause9_01.pdf

Fairness Operation

- Access:
 - Stations need a reservation for bottleneck links
 - Immediate access for non-bottleneck links
- Reservations:
 - Are done per cycle
 - Allocated by the fairness algorithm
 - Based on rate estimations or MAC-queue sizes

Immediate Access

jhs_fairness_02.pdf Vienna University of Technology

© 2002 Institute of Communication Networks

Reserved Access

Institute of Communication Networks -5-

© 2002

CQMA MAC end to end Delay (1000 km ring)

-6-

jhs_fairness_02.pdf Vienna University of Technology

© 2002 Institute of Communication Networks

802.17 MAC end to end Delay (1000 km ring)

• Same scenario with current draft P802.17/D1.0 :

CQMA MAC end to end Delay (10 km ring)

jhs_fairness_02.pdf Vienna University of Technology

© 2002 Institute of Communication Networks

802.17 MAC end to end Delay (10 km ring)

• Same scenario with current draft P802.17/D1.0 :

Fairness Operation: Reservation

- Three rounds of the Fairness Control Message (FCM) are needed for each control cycle:
 - R1: Information round
 - Uses rate estimation and/or real queue size
 - R2: Calculation round
 - R3: Remaining capacity advertisement round (used for immediate access)
- Successive control cycles may overlap (t < 0), but must have at least 1 RTT distance to each other

Vienna University of Technology

Example

Empty FCM:

FCM	Demand	Remaining Capacity
LO		
L1		
L2		
L3		

Round 1: Information Round (cont.)

FCM	Demand	Remaining Capacity
LO	20+80	100
L1	80	
L2	80	
L3		

FCM leaving station 0

- Each station adds its own demand for each link to the corresponding demand field in the FCM
- The remaining capacity is set to the link capacity minus all provisioned traffic over that link
- Link capacities may differ on the same ringlet
- Small FCM size: N*2*2 bytes = 1024 bytes for 256 Stations.

Round 1: Information Round (cont.)

FCM	Demand	Remaining Capacity
LO	20+80	100
L1	<mark>80</mark> +30	100
L2	<mark>80</mark> +30	
L3		

FCM leaving station 1

Round 1: Information Round (cont.)

FCM	Demand		Remaining Capacity	
L0	20+80+90	= 190	100	\mathbf{x}
L1	<mark>80</mark> +30	= 110	100	\checkmark
L2	<mark>80</mark> +30+60	= 170	100	\checkmark
L3	90	= 90	100	

FCM arriving at station 0

Round 2: Calculation Round

- Function: makeFair()
 - Calculates the fair rates
 - Updates the FCM
 - Supports source and flow fairness
 - Scalable
 - Predictable
 - Small (about 30 lines of C code)
- Each station forwards the updated FCM after calculation and can start/continue data transmission

FCM	Demand	Remaining Capacity
LO	20+80 +90 = 90	100-10.5-42.1 = 47.4
L1	<mark>8∕0</mark> +30 = 30	100-42.1 = 57.9
L2	<mark>8∕0</mark> +30+60 = 90	100-42.1 = 57.9
L3	90 = 90	100 = 100

FCM leaving station 0, after makeFair()

Round 2: Calculation Round (cont.)

- Calculation round finished:
 - All stations know their own fair rates to each destination.
 - Note that the stations don't know (and don't need to know) the fair rates of the other stations.

FCM	Demand		Remaining Capacity
LO	20+80+80	= 0	0
L1	<mark>≫(</mark> +3∕(= 0	38.6
L2	<mark>8∕0+2∕0+6∕0</mark>	= 0	0
L3	×	= 0	52.6

FCM at the end of the calculation round

Round 3: Remaining capacity round

- FCM travels the last round to inform all stations about the remaining capacity
- Stations are free to use the remaining capacity for immediate access in the current cycle

FCM	Demand	Remaining Capacity
LO	0	0
L1	0	38.6
L2	0	0
L3	0	52.6

Remaining Capacity Example (copy of slide 5)

© 2002 Institute of Communication Networks

Rate Estimation

- Local variables:
 - Estimated[#stations] : Array with the current estimation to each destination
 - Measured[#stations] : Array with the total amount of fairness eligible traffic sourced to each destination in the current cycle
- Executed at each stations at the end of each cycle:

```
If (isOutputQueueEmpty(dest))
Estimated[dest] = Measured[dest]
Else
Estimated[dest] = A * max( Estimated[dest], Measured[dest], B)
If (Estimated[dest] > MAX_ALLOW)
Estimated[dest] = MAX_ALLOW
```

A and B are constants and control a trade-off between throughput and response time during transitions.

Conclusion

- Adapted CQMA:
 - Simple operation
 - To be combined with existing MAC protocol
 - Removes current performance weaknesses
 - Detailed description in jhs_clause9_01.pdf