

Topology Frame Format

PAH – September 2002

9/30/02 Lbr_topoframe_04.ppt

Topology Frame Format in 1.0

- Payload includes the following fields:
 - Station Capabilities
 - East and West Station Address
 - East and West Reserved Bandwidth
- Station Capabilities includes the following data:
 - Weight
 - Jumbo capable indication
 - Wrap protection capable indication

Observations

- Potential parameters that may be required:
 - Per link reserved bandwidth
 - Per link weights
 - Transit path option
 - Vendor specific data
- Parameters are not required during basic topology discovery
 - Message length, variability of parameters and desired optionality complicates fast processing
 - Conclusion: Use two types of messages

Frame Format with TLVs

- TLVs (Type Length Value) can be used to have a flexible frame format
 - Adding new parameters will not change the general frame format
 - Parameters may be optional or mandatory
 - Stations may use the optional parameters or ignore them

TLV format

• TLVs are defined in RFC3036

U bit: Unknown TLV bit. Upon receipt of an unknown TLV, if U is clear (=0), a notification must be returned to the management and the entire message must be ignored; if U is set (=1), the unknown TLV is silently ignored and the rest of the message is processed as if the unknown TLV did not exist.

F bit: Reserved

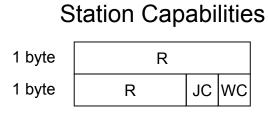
New Topology message format

- Two messages defined:
 - Topology discovery message
 - Reports changes in ring topology
 - Fast transmission rate
 - Topology extended status message
 - Conveys additional information
 - Slower reporting timeframe
- Messages are differentiated by their control type value

New frame format

2 bytes

4 bytes

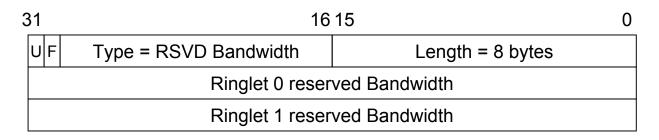

	RPR Header					
2 bytes	Station capabilities					
6 bytes	East Station Address					
6 bytes	West Station Address					
4 bytes	East RSVD bandwidth					
4 bytes	oytes West RSVD bandwidth					
	FCS					

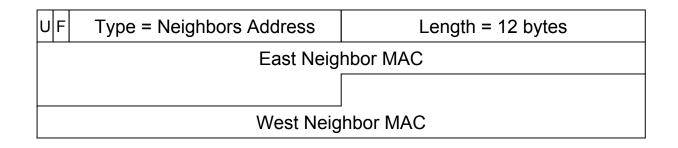
Draft 1.0

Station Capabilities

1 byte	Weight		R
1 byte	R	JC	WC

Topology discovery		ry Ext	Extended Topology		
	RPR Header		RPR Header		
tes	Station capabilities*	2 bytes	Station capabilities*		
tes	FCS		TLV #1		
		N bytes (Optional)			
		(Optional)	TLV #N		
		4 bytes	FCS		




9/30/02 Lbr_topoframe_04.ppt

TLVs examples

UF	Type = Vendor specific	Length =	N bytes
	Vendor OUI		

Conclusion

- Using TLVs makes the scheme flexible and future proof
- Motion to accept the topology clause as defined in the document presented by the PAH