100GBASE-KP4 Training Consensus Building Call

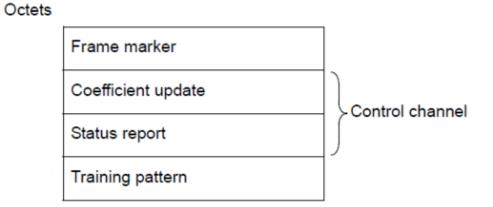
Kent Lusted, Intel
Adee Ran, Intel
Matt Brown, AppliedMicro

(Regarding Comment #38)

Supporters

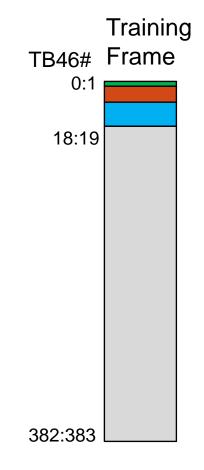
- Andre Szczepanek, Inphi
- Arash Farhood, Cortina Systems
- Brad Booth, Dell
- Dave Chalupsky, Intel
- Rich Mellitz, Intel
- Vasu Parthasarathy, Broadcom
- Ilango Ganga, Intel
- Arthur Marris, Cadence
- Will Bliss, Broadcom
- Stephen Bates, PMC Sierra

Assumptions


- Based on P802.3bj Draft 1.0 and P802.3bh Draft 3.1
- Maximize compatibility with existing training mechanism in Clause 72.6.10
- Leverage the tight integration and interdependence of the PMA and PMD functions, specific to Clause 94.
 - Similar to PCS/PMA dependency in 10GBASE-T link training (Clause 55)

PMD Control Function

- Take Clause 72.6.10 (10GBASE-KR PMD Control) as the baseline
 - Keep as much in common as possible, (i.e. training state diagram, coefficient update process, etc.)
- Modify as given in the following slides


Training Frame Structure

- Keep same basic format as Clause 72
 - Frame marker
 - Control channel
 - Coef update field
 - Status report field
 - Training pattern

100GBASE-KP4 Change Preface

- Pack the Frame Marker, Control Channel and Training Pattern into 46 UI training frame words (TFW)
 - Each TFW corresponds to two full 46-bit terminated blocks (TB46).
 - Simplifies design (i.e. no gearbox)
 - Enables early data alignment during training period
 - Enables regular data recovery and fast switching to data mode
- Use PAM4 signaling in the training pattern
- At end of training process, make it easy to lock to the correct offset in PMA frame
- Add parity check to both control channel fields

Easy Lock to PMA Frame

- Training Frame alignment to the Overhead Frame logic is important for rapid transition from the training mode to data mode
 - 100GBASE-KP4 PMA frame consists of 696 TB46
 - Proposed 100GBASE-KP4 training frame is 384 TB46
 - Gcd(696, 384) = 24
 - The offset is periodical with a cycle of 696/24=29 training frames
- Training frames shall always be transmitted with offset which is $24 \cdot k$, $k \in \{0 \dots 28\}$ words relative to the 40-bit overhead
 - Other offsets are illegal
 - Assuming the first training frame starts at offset 0 (k=0), then
 the second training frame starts at offset 384 (k=16), and
 subsequent training frames start at offsets with k equal to 3,
 19, 6, 22 ...

Frame Marker and Control Channel

- To simplify link training in the link establishment process when TRANSMIT(TRAINING), the PAM4 multi-level signaling shall not be used for the Frame Marker, Coefficient Update, and Status Report fields.
 - Make it full-swing, i.e. "NRZ" like
- During the transmission of the Frame Marker, Coefficient Update, and Status Report fields, the PAM4 transmitter shall bypass the overhead frame, termination block, gray coding, and 1/(1+D) mod 4 precoding stages of the PMA transmit and receive functional specifications.
 - Therefore, the output levels shall be restricted to level -1 for a 0 and level +1 for a 1 to enable easy receiver lock to the training pattern over poor quality and nonequalized channels.

Frame Marker – TFW #1

- Frames are delimited by the 46 PAM4 symbol pattern, 23 +1 symbols followed by 23 -1 symbols, +1s first, as expressed in 13.59375 Gbd symbols.
- This pattern does not appear in the control channel or the training pattern and therefore serves as a unique indicator of the start of a training frame.

			UI					
TFW	T-block	45:36 35:26 25:16 15:6 5:0						
C	0:1	1111111111	1111111111	1110000000	000000000	000000	frame marker	

Control Channel Cells

- Signaled using differential Manchester encoding (DME) like in Clause 72.6.10.2.2
- Each DME cell contains 2 DME transition positions.
 - Each transition position is the mid-point of the cell.
- The <u>data</u> cell length is 10 100GBASE-KP4 PAM4 symbols. (~736ps)
 - Approximately the same duration at 10GBASE-KR cells
 - Transition position is the mid-point of the cell.

Control Channel Encoding

- Control channel uses 9 TFWs
 - TFW #1 to #9
- Pack 4 data cells of control channel into 1 TFW
 - Cells take definitions and ordering as shown in slides 13-14.
 - Coef Update Field before Status Update Field
 - Highest # cell first, in descending order
 - Uses 40 of 46 PAM4 symbols in 1 TFW

What about the Remaining 6 UI?

- Define the last 6 PAM4 symbols in each of TFW #2-11 as overhead cell
 - Transition position is 3 PAM4 symbols
- Set overhead cell to a DME logic '1' of 6 PAM4 symbols width
 - Preserve the DC balance on the line
 - 000111 or 111000, depending on previous cell value
 - Same DME coding rules as before

Coef Update Field

Table 72 4 Coefficient update field

11:7 Reserved6 Parity Check

Cell ordering not finalized

Cell(s)	Name	Description			
15:14	Reserved	Transmitted as 0, ignored on reception.			
13	Preset	1 = Preset coefficients 0 = Normal operation			
12	Initialize	1 = Initialize coefficients 0 = Normal operation			
1,	Reserved	Transmitted as 0, ignored on reception.			
5:4	Coefficient (+1) update	5 4 1 1 = reserved 0 1 = increment 1 0 = decrement 0 0 = hold			
3:2	Coefficient (0) update	3 2 1 1 = reserved 0 1 = increment 1 0 = decrement 0 0 = hold			
1:0	Coefficient (-1) update	1 0 1 1 = reserved 0 1 = increment 1 0 = decrement 0 0 = hold			

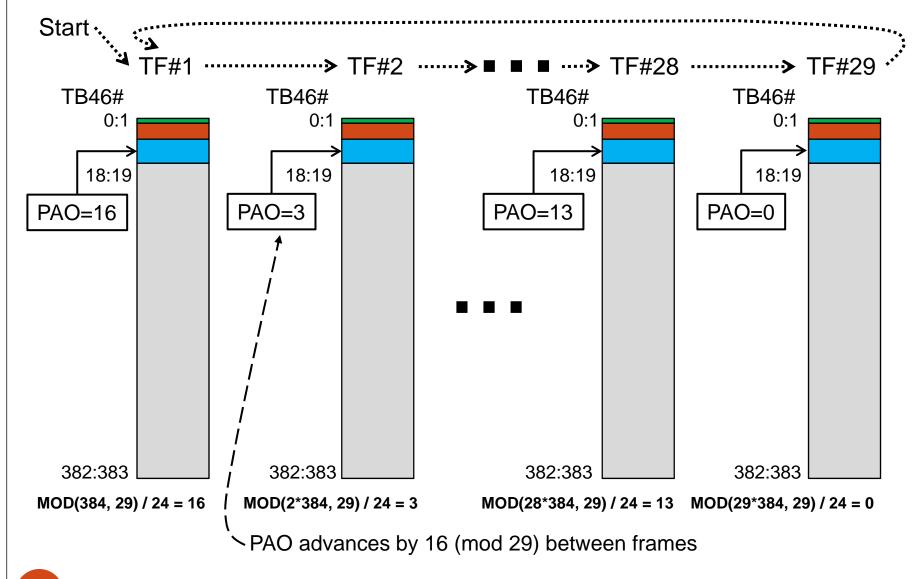
Status Report Field

- 20 cells
 - 5 TFWs
 - 10 TB46
- Add new features
- Keep coef status and move Receiver Ready
- Cell ordering not finalized

Cell(s)	Name	Description
		Parity calculation for Status Report
19	Parity Check	Field
		Current EEE state of local transmitter,
18:14	EEE State	if EEE is implemented.
		Number of training frames remaining
		before link training process
13:12	Training Frame Countdov	transitions to data mode
		Relative location of the next training
		frame within the PMA frame
11:7	PMA Alignment Offset	
		1 = The local receiver has determined
		that training is complete and is
		prepared to receive data.
		0 = The local receiver is requesting
		that training continue.
6	Receiver ready	
		<u>5</u> <u>4</u>
1 1	1	4.4
		1 1 = maximum
		1 0 = minimum
5:4	coefficient (+1) status	1 0 = minimum
5:4	coefficient (+1) status	1 0 = minimum 0 1 = updated
5:4	coefficient (+1) status	1 0 = minimum 0 1 = updated 0 0 = not_updated
5:4	coefficient (+1) status	1 0 = minimum 0 1 = updated 0 0 = not_updated 3 2
5:4		1 0 = minimum 0 1 = updated 0 0 = not_updated 3 2 1 1 = maximum
5:4 3:2	coefficient (+1) status coefficient (0) status	1 0 = minimum 0 1 = updated 0 0 = not_updated 3 2 1 1 = maximum 1 0 = minimum 0 1 = updated 0 0 = not_updated
		1 0 = minimum 0 1 = updated 0 0 = not_updated 3 2 1 1 = maximum 1 0 = minimum 0 1 = updated 0 0 = not_updated 1 0
		1 0 = minimum 0 1 = updated 0 0 = not_updated 3 2 1 1 = maximum 1 0 = minimum 0 1 = updated 0 0 = not_updated 1 0 1 = maximum
		1 0 = minimum 0 1 = updated 0 0 = not_updated 3 2 1 1 = maximum 1 0 = minimum 0 1 = updated 0 0 = not_updated 1 0
		1 0 = minimum 0 1 = updated 0 0 = not_updated 3 2 1 1 = maximum 1 0 = minimum 0 1 = updated 0 0 = not_updated 1 0 1 = maximum

Two New Parity Check Fields

- This is an improvement over the original clause 72 rules
 - Guarantees DC balance of DME cells during training
 - Coef update and status report fields always starts with +1 PAM4 symbols
 - Increases protection against false acceptance of sensitive messages, e.g. preset, init, receiver ready
- Use cell 6 of the coef update field and cell 19 of status report field to encode a parity check for each respective field
 - The two parity bits are calculated for each field (coef update, status report) separately, such that each field as a whole, including the parity bit has even parity
 - Parity is the number of logical-one cells in the field, modulo 2 (not including the overhead bits)
- If a parity violation is detected within the bounds of the respective field in a given training frame, the contents of that field for that frame shall be ignored.
 - i.e. parity error in status report only affects status report, not coef update


New Status Report Cells

- EEE State (Cells 18:14)
 - Current EEE state of local transmitter, if EEE is implemented
 - Otherwise, reserved and set to 0.
 - See brown_0x_xxxx.pdf for more details
- Training frame countdown counter (Cells 13:12)
 - Used to signal the transition from training to data mode.
 - Start at 3, decrement toward 0 during the last 3 frames sent (2 -> 1 -> 0)
 - 3 indicates 3 or more frames remaining
 - When a frame is sent with this value = 0, after the last TFW of training pattern is sent, transmission immediately switches to the PMA frame

New Status Report Cells (2)

- PMA Alignment Offset -- PAO (Cells 11:6)
 - To shift instantly to data mode after the last training frame ends, RX needs to know the relative offset of the first data block (TB46) from the 40-bit overhead within the PMA frame
 - PAO encodes the relative location of the TB46 after the end of the training frame (mod 696) as a 5-bit integer
 - The start of the next training frame is 24 * PAO
 - 0: marker aligned with 40-bit overhead
 - 1: marker is at offset of 24*1=24 termination blocks from 40-bit overhead
 - •
 - 28: marker is at offset 24*28=672 termination blocks from 40bit overhead
 - 29 to 31: invalid, never transmitted, ignored on reception

PMA Alignment Offset Example

Frame Marker and Control Channel Mapping Ordering

Symbol TX order (send row before advancing block)

Block TX order

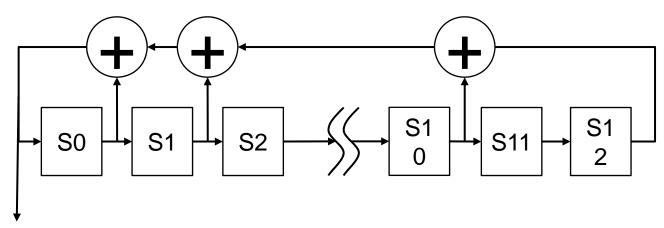
TFW	T-block	45:36	35:26	25:16	15:6	5:0	
	0 0:1	1111111111	1111111111	1110000000	000000000	000000	frame marker
	1 2:3	cell 15	cell 14	cell 13	cell 12	overhead	coef update
	2 4:5	cell 11	cell 10	cell 9	cell 8	overhead	coef update
	3 6:7	cell 7	cell 6	cell 5	cell 4	overhead	coef update
	4 8:9	cell 3	cell 2	cell 1	cell 0	overhead	coef update
	5 10:11	cell 19	cell 18	cell 17	cell 16	overhead	status report
	6 12:13	cell 15	cell 14	cell 13	cell 12	overhead	status report
	7 14:15	cell 11	cell 10	cell 9	cell 8	overhead	status report
	8 16:17	cell 7	cell 6	cell 5	cell 4	overhead	status report
	9 18:19	cell 3	cell 2	cell 1	cell 0	overhead	status report

Training Pattern Motivation

- Use the PMA transmit and receive functional specifications as currently defined in P802.3bj
 Draft 1.0 to enable the transmitter and receiver to exercise termination block, gray coding, and 1/(1+D) mod 4 precoding stages.
 - Overhead framer does not have to be exercised, but alignment is tracked through PMA Alignment Offset (PAO) cell
- Generate multi-level PAM4 signaling for receiver calibration
- Choose a pattern that is PMA termination block friendly

Training Pattern Details

- Apply termination, Gray coding, 1/(1+D) mod 4 precoding and PAM4 mapping
- PRBS13 is used for training pattern generation, followed by its inverse
 - 8191 bits are generated from the LFSR (a full PRBS13 cycle)
 - Additional 8189 bits are generated and sent inverted (a full PRBS13 cycle minus 2 bits)
 - Last 2 bits of the inverse PRBS13 are discarded, so PRBS uses 16380/45=364 TB46
 - 4 initial seeds selected to create desired properties
- Pack each 45 bits of PRBS13 into TB46
- Training frame (frame marker, control channel and training pattern) contains 384 TB46


Training Pattern Initial State

- Use four unique states to create a distinct DC balanced sequence for each lane
 - Helps with lane order identification later on.
 - After generating 8191+8189=16380 bits, the next training frame starts (marker and control channel); LFSR state is re-initialized so that the training pattern starts with the same bits for all training frames.
- PRBS state and precoder state shall not advance during frame marker and control channel transmission and is reset for each training frame.

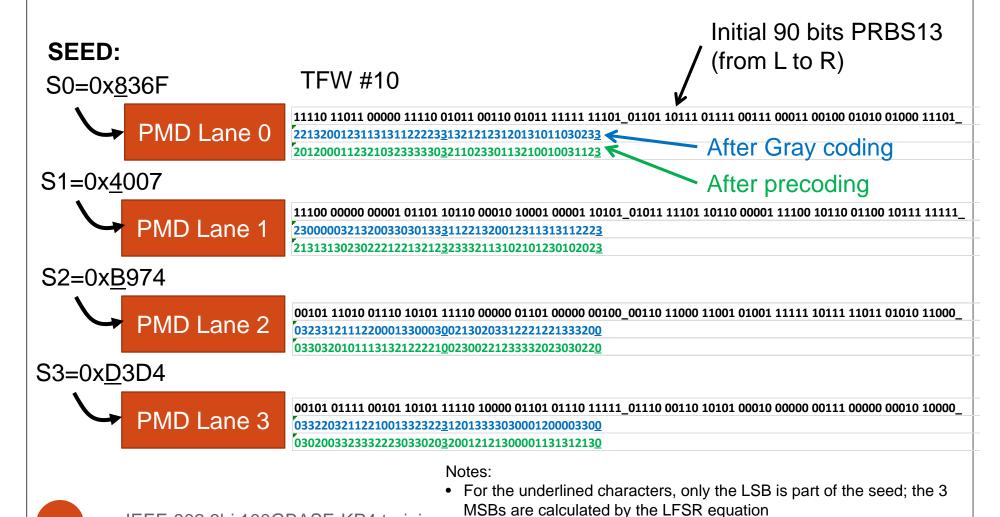
PRBS13 pattern generator

 The PRBS13 generator shall produce the same result as the implementation shown below, which implements the Fibonacci generator polynomial:

$$G(x) = 1 + x + x^2 + x^{11} + x^{13}$$

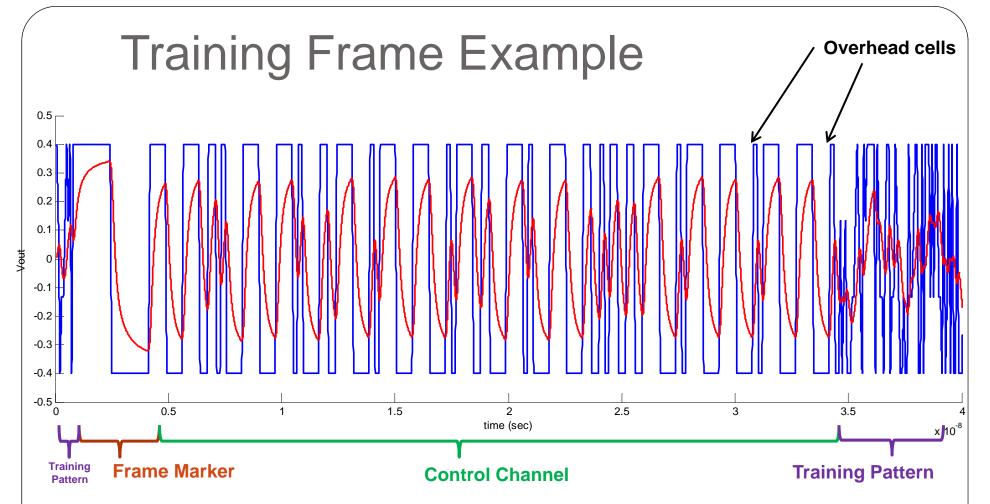
PRBS13 pattern output

IEEE 802.3bj 100GBASE-KP4 training


Training Pattern Seeds

- The *initial outputs* of the PRBS13 generator, right after the control channel transmission, shall be different for each of the PMD lanes, as follows (LSB transmitted first)
 - PMD lane 0: 0x836F
 - PMD lane 1: 0x4007
 - PMD lane 2: 0xB974
 - PMD lane 3: 0xD3D4

Note: for the underlined characters, only the LSB is part of the seed; the 3 MSBs are calculated by the polynomial


- Note: in this implementation, to generate these initial outputs, the *initial state* of the shift register should be set as follows (LSB in S0, MSB in S12)
 - PMD lane 0: 0x0355
 - PMD lane 1: 0x06FF
 - PMD lane 2: 0x0E16
 - PMD lane 3: 0x1C87

Training Pattern Seed Mapping

IEEE 802.3bj 100GBASE-KP4 training

• Precoder starts from state 0

- Blue = no channel
- Red = after IL = ~30dB @ 7GHz channel (without TXFFE equalization)
- Training pattern shown is incomplete. Figure is zoomed to frame marker and control channel

Channel used "TEC_Whisper42p8in_Nelco6_THRU_C8C9" from http://www.ieee802.org/3/100GCU/public/ChannelData/TEC_11_0428/shanbhag_03_0411.pdf

IEEE 802.3bj 100GBASE-KP4 training

Training Frame Time Breakdown

- 1 Training frame contains 384 TB46
 - 8832 PAM4 symbols or 649.7 ns;
 - 95% of the duration is rich-content signal
- For reference, 1 training frame for 10GBASE-KR is ~425 nsec
- Link_fail_inhibit_timer (KR) = 500-510 msec
 - ~770k frames in 100GBASE-KP4
 - ~1.2E6 frames in 10GBASE-KR

Field	# of TB46	# of TFWs	TB46 start index	TB46 end index	TFW start index	TFW end index
Marker	2	1	0	1	0	0
coefficient request	8	4	2	9	1	4
status update	10	5	10	19	5	9
PRBS13+PRBS13i, truncated to						
16380 bits	364	182	20	383	10	191

PMA frame length [TB46]	TF length [TB46]	GCD	Possible offsets	PAO width	PRBS length [TB46]	PRBS % of TF	TF length(ns)
696	384	24	29	5	364	94.8%	649.7

Conclusion

- 100GBASE-KP4 Training frame in this presentation has the following qualities:
 - Reuses most of the existing 10GBASE-KR PMD training mechanism
 - Encompasses the PMA and PMD architecture unique to 100GBASE-KP4
 - Provides PAM2 for ease of alignment and PAM4 signaling for receiver calibration
 - Supplies DC-balanced, lane-specific seeded training pattern
 - Offers parity check for coef update and status report fields
 - Enables fast and efficient transition to data mode
 - Facilitates EEE signaling, if required