EVITESSE® Making Next-Generation Networks a Reality.

Technical Feasibility of Serial 25 Gb/s Signaling over Backplanes: Channel and System Analysis

IEEE 802.3 100GCU Study Group Interim Meeting, Fort Lauderdale, FL.

Ziad Hatab and Frank Chang January 12-13, 2011

Introduction

- There is a clear demand to develop 25 Gb/s serial over backplane solutions towards higher throughput per lane:
 - Higher port density in servers and data centers.
 - Current trends for chip-chip backplane speeds vary from 19.9 to 25.8 Gb/s/lane.
- Technical & economical feasibility are among major concerns for end users:
 - Signal integrity through 25 Gb/s backplane is hard to achieve with higher insertion losses, distortions, and impairments.
 - Various well-understood technologies such as equalization, multi-level coding schemes, and FEC can be combined to achieve 25 Gb/s.
 - New and higher-cost channel materials and connectors with improved signal integrity are in development by industry.
 - Technical solutions, while feasible, should make economic sense (power/complexity/cost/latency).

Considering Technology Enablers

Potential enablers for more Gb/s/lane

25 Gb/s Backplane Channels: Initial Insight

- The Study Group should first reach consensus on clear objectives regarding the reference channel models based on end users' input.
- Early visibility into 25 Gb/s backplane channels reveals 2 categories:
 - Legacy 10 Gb/s designs
 - Long lengths (≈ 30 ")
 - 10G-generation trace material
 - 10G-generation connectors
 - Example case study: VTSS-1
 - New/Upgraded designs
 - Intermediate and short lengths (≈ 20 " and 10")
 - Backwards compatible
 - 10G-generation trace material
 - Improved connectors
 - Example case study: VTSS-2 and VTSS-3

Backplane Channel: VTSS-1 (LR Traces)

Backplane Channel: VTSS-2 (IR Traces)

Backplane Channel: VTSS-3 (SR Traces)

Equalization and Modulation

- Equalization Requirements:
 - Approximate equalizer size derived from impulse responses sampled at 25GHz:
 - Legacy designs: ≈ 25 equalizer taps
 - Upgraded designs: \approx 20 equalizer taps
 - Rx equalizer only.
 - Combination of Tx equalizer and Rx equalizer.
- Potential Line Codes to Consider and Compare:
 - NRZ:
 - Viable with next-generation trace materials and connectors.
 - Duobinary:
 - Potentially outperform NRZ coding at high data rates with similar complexities.
 - ► PAM-4:
 - More complex coding scheme at half the baud rate.
- Ultimately, time-domain simulations are required to determine best equalization and to compare line codes.

Criteria for Line Code Comparisons

- When comparing multi-level and NRZ codes using time-domain simulations, pay attention to:
 - Transmit Power:
 - Same V_{pp} : NRZ at a launch power advantage.
 - Same V_{RMS} : all line codes should have similar TX launch power.
 - Equalizer Convergence: Different modulation schemes tend to have different adaptive (LMS) equalizer convergence rates. Use ideal (LS/MMSE) equalizer results in conjunction with LMS equalizer results, especially on difficult channels requiring long simulation time for convergence.
 - Signal to Noise ratio (SNR): absolute SNRs are irrelevant, compare SNR margins at given BER:

 $SNR_{margin} = SNR_{actual} - SNR_{required}$

Line Code	Bit Rate (Gb/s)	Symbol Alphabet (a _k)	Tx V _{PP} (v)	Tx V _{RMS} (v)	Baud Rate (GHz)	Nyquist freq. (GHz)	Approx. VTSS-1 channel loss at Nyquist (dB)	Rx Slicers
NRZ	25	{±1}	2	1	25	12.5	-38.4	1
Duobinary	25	{±1,0}	2	0.5	25	12.5	-38.4	2
PAM-4	25	{±1,±1/3}	2	0.56	12.5	6.25	-21.6	3

0

FEC and Crosstalk Cancellation

- Forward Error Correction (FEC)
 - ▶ Burst-Error-Correcting codes provide 2-3 dB of net electrical coding gain (NECG):
 - Low-latency and low-power (Fire/cyclic codes).
 - Common implementation handles single bursts.
 - Example: 10GBASE-KR FEC
 - ▶ Burst-and-Random-Error-Correcting codes provide 5-7 dB NECG:
 - Higher latency and higher power/complexity (Reed-Solomon codes, BCH codes, concatenated codes, etc.)
 - Example: RS(255,239) FEC
 - ▶ Enhanced Burst-and-Random-Error-Correcting codes provide >7 dB NECG:
 - LDPC, Turbo Codes, Interleaved codes, etc.
 - Example: G.975 codes such as Vitesse CI-BCH FEC
- Crosstalk Cancellation
 - Crosstalk canceller block requires access to aggressor waveforms:
 - Better suited for near-end crosstalk cancellation.
 - For some applications, NEXT is no longer an issue because of physical separation at pin-out level.
 - Of concern at these rates is package crosstalk.

Package Models: Insertion Loss and Return Loss

- At 25 Gb/s serial over backplanes, packaging insertion loss, return loss, and possibly crosstalk become important factors:
 - Package IL favors multi-level line codes.
 - Package RL not as deterministic and has large variations.
 - Package models above provided courtesy of IBM:
 - www.ieee802.org/3/ba/public/tools/PkgModels40GHz.zip

Package Models: Crosstalk

Conclusions

- Strong market demand for 25 Gb/s serial over backplanes.
- The Study Group should first reach consensus on clear objectives regarding the reference channel models based on end users' input:
 - Current Vitesse backplane channels limited to 30" in length with mostly 10G-era components.
- It is technically feasible to transmit 25Gb/s serial over backplanes:
 - Multi-level coding techniques need to be considered in addition to NRZ:
 - The pro and cons of various line coding schemes need to be carefully taken into account.
 - When comparing NRZ and multi-level coding schemes, keep playing field as leveled as possible.
 - Consider economic feasibility.
- Need to specify package models for specific process node:
 - At 25 Gb/s serial over backplanes, packaging insertion loss, return loss, and possibly crosstalk become important factors.
- FEC will most likely be needed:
 - Mandatory or optional depending on line code and channel reach.
 - ▶ Investigate codes with "mid-range" NECGs (3-5 dB) while keeping latency low.

