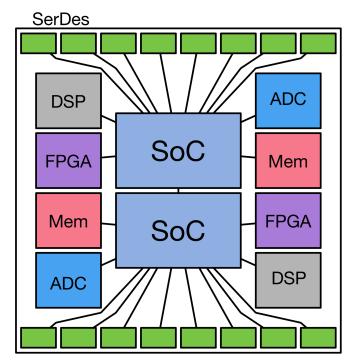
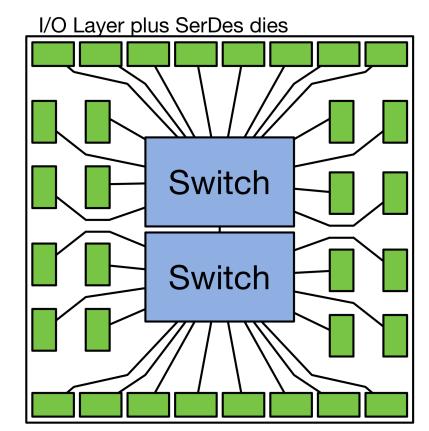
Using Chiplets to Lower Package Loss

IEEE 802.3 100 Gb/s Electrical Lane Study Group March 7, 2018 Brian Holden, VP of Standards


Kandou Bus SA

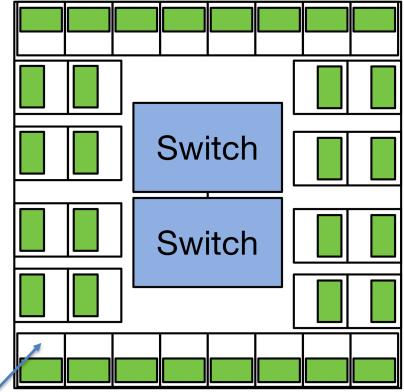
Chiplet Technology

- A trend in IC technology is to more away from monolithic chips toward the use of chiplets tied together on an MCM
- Chiplets allow the:
 - Combination of many dies into large packages
 - Improvement in yield and cost because of a smaller central die(s) a major factor
 - Distribution of heat away from a single die
 - Use of the best semiconductor process for each die
 - Enabling of multi-vendor ecosystems
 - I/O subsystem dies containing SerDes to be placed around the perimeter, creating virtual smaller packages


Big, 70mm packages are routine

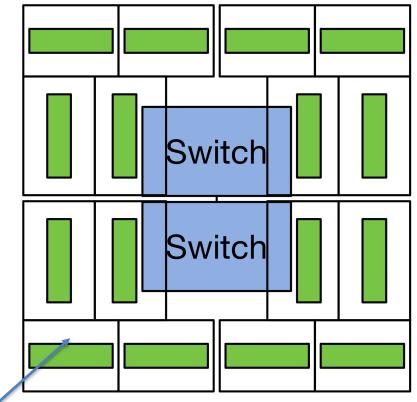
Non-interposer MCMs can easily use 20 or more dies plus passives

Chiplets in Switches


- The Ethernet I/O Subsystem including the SerDes can be put on a chiplet
 - Chiplet can have the PCS, FEC and long-reach SerDes and use a fat-pipe packet protocol between devices with a little speed-up factor
 - The chiplets could alternatively use a lower or higher level protocol between devices
 - 800 Gb/s, 1600 Gb/s or 3200 Gb/s of I/O are three possible chiplet sizes
 - Switch-to-chiplet link can use a Femto SerDes
 - A chord signaling Femto SerDes is one example
 - Femto SerDes can reach to the corners of a 70 mm package

Virtual Packages

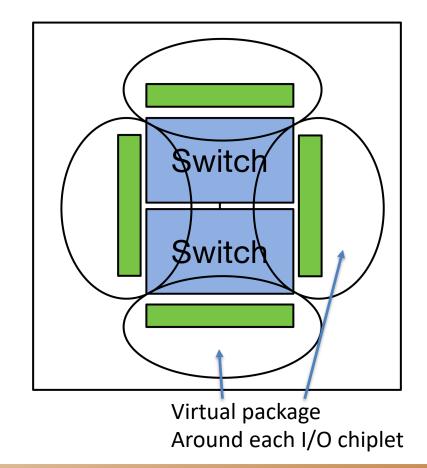
- Putting the I/O subsystem on chiplets allows virtual packages to be created
 - Chiplet only fans out to the package balls in its immediate area
 - Looks like a small package to the system
 - The package loss budget can be reduced
 - The front panel optics interface can be modeled as being between two 12mm reach packages
 - A 30mm reach package model is not needed



Virtual package Around each I/O chiplet

Virtual Packages

- With 16 I/O chiplets, slightly larger virtual packages are formed
 - A 30mm reach package model is still not needed



Virtual package Around each I/O chiplet

Virtual Packages

- Even with shorter reach (<10mm) technology that can only get to 4/8 chiplets, virtual packages can be formed
 - Put other I/O in the four corners
 - This is representative of what micro-bump fan-out layer and silicon interposer techniques can deliver
 - Here, a virtual package in the 20 mm reach range can be created
- Given that multiple chiplet solutions
 exist, it would be wasteful to budget
 for a monolithic chip solution

Package Alternatives

Conventional Packaging

	Conventional
Die placement	Inflexible
Signal integrity of external interfaces	Worst - traces must fan out to reach the perimeter package balls
Assembly Yield	Good
Number of Dies	1
Supply chain	Good

- Ideas for extending
 - Use better materials
 - Co-design the ASIC and the package
 - Tune equalizers to the fan-out trace
 - Don't try to fit so many SerDes in one package
- But there is only so much that can be done

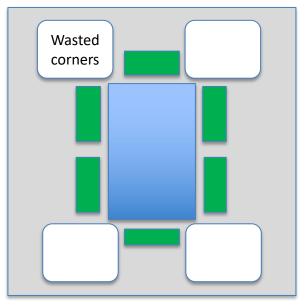
MCM with Femto SerDes

	MCM using Femto SerDes	Big, 70mm
Die placement	Flexible because of the 2.5cm reach	packages
Signal integrity of external interfaces	Best - external interface can be located close to the package balls	Can put SerDes
Assembly Yield	Made with PCB-like fabrication equipment. Well known technology with good yield	right over the package balls
Number of Dies	Can handle many dies	Can easily use 20 or more dies plus passives
Supply chain	Multiple OSATs can handle	
IS		

SerDes

Silicon Interposers

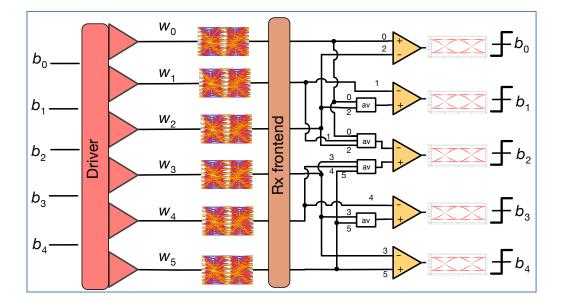
KANDOU B


	Dis also second	2.5D interposers	Can't fill a 70mm package due to reticle size
7	Die placement	Non-flexible & strict design rules	
	Signal integrity of external interfaces	Medium - restrictions on die location may cause long traces of external high speed interfaces	Constraints may force non-optimal SerDes
	Assembly Yield	Made with semiconductor fab equipment => fine pitch leads to yield loss	placement
	Number of Dies	Yield problems limit to only a few dies "Stitched" interposers are more exotic, have connection limits, and have stricter design rules	Corners tend to get wasted
BUS	Supply chain	Specialized suppliers	

Micro-bump Fan-Out Layers

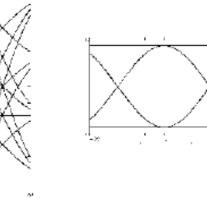
	FO-WLP, FO-PLP
Die placement	Even stricter design rules
Signal integrity of external interfaces	Medium - die location may cause long traces of external high speed interfaces, impacting link performance
Assembly Yield	Micro-bump fan-out layers are made with semiconductor fab equipment => fine pitch leads to yield loss
Number of Dies	Yield problems limit to only a few dies
Supply chain	Limited number of suppliers

KANDOH BH


Similarly, micro-bump fan-out layers have reticle size limits

Example Femto SerDes technology Chord signaling

Advantages:


- Ideal for shorter connections including die-to-die interconnect inside a package.
- Balanced values on wires reduce
 SSO Noise and EMI.
- Tolerates common mode noise similar to differential signals.
- Values at slicers are binary.
 - Similar to NRZ signaling
 - ISI Ratio = 1
 - Comparators are self-referencing.

14

Key Advantage of CNRZ-5 over PAM-4: ISI Ratio

- Inter Symbol Interference Ratio (ISI Ratio):
 - Inherent property of any given code
 - A rough definition is that it is the code's ratio between the largest and smallest eyes at the decision point
- Energy from the larger eyes bleeds over and tends to close the smaller eyes
 - High ISI Ratio codes require more energy to be spent on ISI equalization
 - High ISI Ratio codes are more vulnerable to reflections

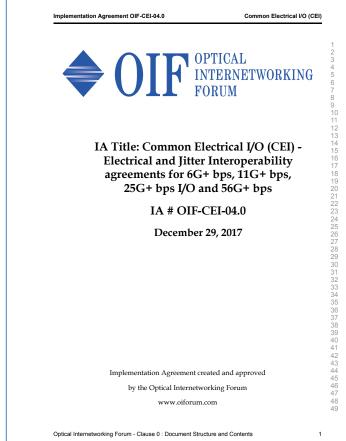
PAM-4's ISI

Ratio = 3

CNRZ-5's ISI Ratio = 1

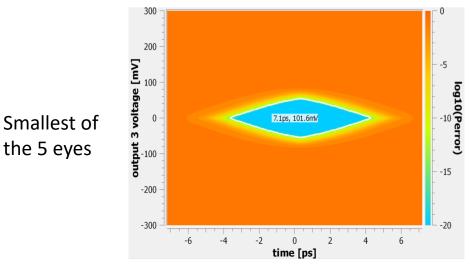
Standardization of Chord Signaling

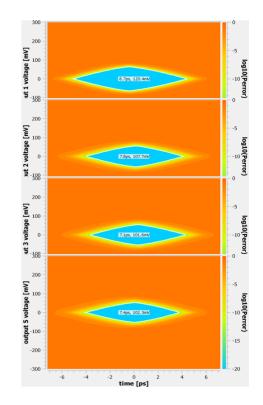
JEDEC


- CNRZ-5 is part of the JESD247 standard
- Specifies
 - Signal levels on the wires
 - Driver specification
 - Receiver specification
 - HSPICE modeling

	JEDEC STANDARD
	Multi-wire Multi-level I/O Standard
	JESD247
•	JUNE 2016 JEDEC SOLID STATE TECHNOLOGY ASSOCIATION
	JEDEC.

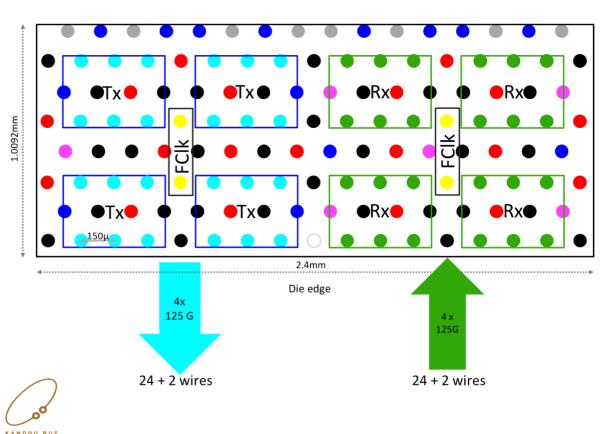
OIF


- ENRZ, CNRZ-5's cousin code, is a part of the OIF's published CEI 4.0 specification
 - Full Interoperability Agreement at 56
 Gb/s equivalent throughput
- The OIF announced the CEI-112 in MCM project to address this need
 - Kandou has been active in this project



CNRZ-5 Simulation at 69.6 GBaud

- Simulation over a 1 cm MCM link at 69.6 GBaud
 - Robust, even at high speed
 - Much larger eyes than equivalent PAM-4 solution



Example Femto SerDes for MCMs

The GW16-500 PHY

Process:

- TSMC 16nm FFP-GL
- Metal stack for GW is 12 layer;

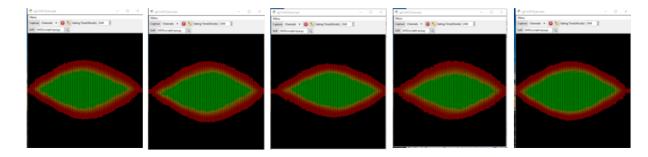
12ML_M1_1Mx_2Mxa_2Mx y_2My_2Myy_1Mz_1Mr_A P280

 Devices used: HVT, LVT and nominal VT (3 types)

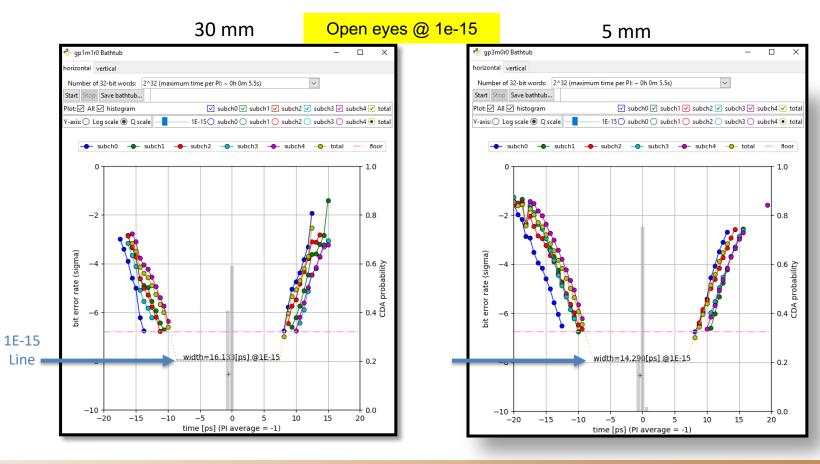
General:

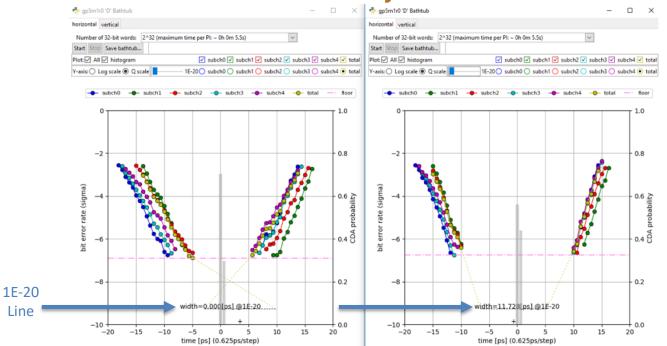
- IP uses inductors (Tx side) and T-coil (Rx side)
- Tx output driver is voltage mode (SST type)
- Flip chip package with 150µm bump pitch

GW16-500 PHY Metrics


Sample applications	Connecting to 56G outbound SerDes, subdivision of large ASIC
Process	TSMC 16nm FF+ GL
Max throughput	500 Gbps Tx, 500 Gbps Rx
Supported BER	1E-15 across all corners
Supported insertion loss	6dB @ 12.5 GHz w/60 ohm ref impedance
Supported skew	Up to 10% of UI in 6-wire chord
Power	0.82 pJ/b (nominal PVT) measured
Latency	< 4.5 nsec - fixed
ESD	250V CDM; 1000V HBM
Total area	2.4 mm ² – bump limited
Beachfront BW	208 Gbps/mm per direction, 417 Gbps/mm total
Optional FEC	Can be used to lower BER to 1E-28, or save power.
FEC latency	1.25 ns collection latency

GW16-500 Lab Results


- The MCM has 12 test chips inside connected by channels of various length/quality
 - Multiple bends
 - Lengths from 3mm to 30mm
- Eye diagrams below done via on-die eyescope on a single chord



Lab Results: Horizontal Bathtub Plots @ 25 Gbaud

KANDOU BUS

Lab results: Same with Low-latency FEC

On the left is a measured (out of spec) channel that is closed (<25%) at 1E-15
 On the right FEC is turned on – the bathtub to support 1E-20 is open (>25%)

IP Disclosure

- Kandou Bus, S.A. discloses that we own intellectual property related to Chord Signaling and the PHYs described in this contribution.
 - We are committed to adhering to the bylaws of all standards organizations to which we contribute and maintain membership including RAND licensing of our intellectual property.
 - We are committed to being good corporate citizens.

Thank you!

QUESTIONS?

