Direct Attach Copper Cable Broad Market Potential and Economic Feasibility DAC is not Dead (Updates) Tom Palkert (Molex), 3-6-18

Supporters

Outline

- Relative market size of Direct Attach Copper Cables (DAC)
- Challenges with current network use-case
- Network deployment options for 100G serial
- Cable length distribution
- Options for 100G serial switch design
- Relative cost analysis

Relative market size of DAC

Typically 10x larger than equivalent optical market Interconnection Volume

- Four sections per colo & multiple colos (≥ 4) per data center
- Volumes below are per section (except DCR to Metro)

A End	Z End	Volume	Reach (max)	Medium	Cost Sensitivity	Market Space
Server ‡	TOR	10k – 100k	3 m	Copper	Extreme	
TOR	LEAF	1k – 10k	20 m	Fiber (AOC)	High	LAN
LEAF	SPINE	1k – 10k	400 m	SMF	High	
SPINE	DCR	100 - 1000	1,000 m	SMF	Medium	Campus
DCR	Metro	100 - 300	10 - 80 km	SMF	Low	WAN

‡ Server-TOR links may be served by breakout cables

Source: Brad Booth, Microsoft http://www.ieee802.org/3/400GSG/public/13_11/booth_400_01a_1113.pdf

IEEE 802.3 400G Study Group - November 2013

Current deployment use case has 3m DAC for TOR switch and 30-300m AOC for Aggregation switch

Top-Of-Rack (TOR) - Network Connectivity Architecture

TOR switches can have 32-48 ports of SFP (Single lane module) or 32-36 ports of QSFP (Quad ports)

Improvement option 1: Move Switch to center of rack

Top-Of-Rack (TOR) - Network Connectivity Architecture

See Joel Georgen Presentation for details of cable length requirements

Cable Length Distribution

- Cable taken from 3 suppliers.
- Distributions of reaches averaged to anonymize data

Improvement option 2: Low Loss PCB

Low loss switch channels can be achieved with 'advanced' PCB materials

See: diminico_100GEL_01_0118

Internal cables replace PCB traces

Key Benefits:

- > Lower System-Level Costs:
 - Eliminate the need for costly PCB materials (Nelco, Megtron, Tachyon, etc)
 - Eliminate the use of additional DFE or retimer chips to drive long traces
 - Improved thermal performance with 1x1 cages (air-cooled)
- > Architectural Flexibility:
 - Freedom to locate ASIC anywhere (eg. further from backplane)
 - > Enable lower power ASIC
 - > Extended reach from ASIC to I/O
 - Enable longer external copper I/O cables
 - > Cool the ports and the ASIC better
- New ways to handle power integrity to large ASICs

Bipass cables can be made with multiple wire gauges to optimize size vs loss (See Molex presentation)

Improvement option 4: Define asymmetric switch to server connections

Define end to end budgets that take advantage of short NIC traces

Asymmetric link would require link negotiation similar to 25G-CR-S copper

Switch ports require long host to module traces

Server ports have very short host to module traces

Improvement option 6: Add retimers

Economic Feasibility

- Reviewed relative costs of 2 network designs
 - Structured cabling
 - Direct attach AOC
- Used both high volume pricing and retail pricing

Economic Feasibility baseline

MPO structured cabling (2 MPO cables per rack)

Relative cost analysis Option 1: Replace TOR switch with server to EOR switch optical modules using structured cabling

Relative cost analysis Option 2: Replace TOR switch with server to EOR switch optical modules using Active Optical Cables

Summary:

DAC is not dead

- Copper variants are prevalent and economically critical in the market today because of the cost/performance tradeoff they provide
 - Most cost effective intra rack connection
 - 10x larger market size vs optics
- Multiple options exist to enable 100G serial DAC to provide the cost benefits demanded by end users
- 2m DAC cable is the required length