

Rob Stone

5/9/18

Use of DAC Current generation technologies

- Server (or more generally endpoint) to ToR connections
 - Low cost, low power, used in close to all use cases today
- Fixed box "virtual chassis"
 - Example is Facebook "Fabric Aggregator" with DAC based "sideplane"
- Relevant attributes of these designs for this discussion:
 - All IO is from the front of the box (no backplanes)
 - Long PCB traces from the most distant ports to the switch (~9")
- Will this scale to 100G / lane DAC?

From: FacebookFabricAggregatorOCP_Spec_v1.0 (OCP)

Architectural changes to ToRs due to reduced physical VSR reach

- Hypothetical Example:
 - 25.6T, 256 x 100G
 - 1RU box, Single ASIC (ToR design profile, also used as virtual chassis, aka "Fixed Box")
 - 32 x 800G module cages, all front panel IO
- Using Rosemont budget proposal from Jane Lim:
 - http://www.ieee802.org/3/100GEL/public/18 03/lim 100GEL 01b 0318.pdf
 - [~ 5" Host trace supported for VSR channels]
 - Approximately 12 / 32 module cages cannot accommodate the proposed host budgets (VSR or CR), requiring either intermediate retimers, or intra-box cabling

How Shorter Host Loss Maps to Possible Solutions

Add retimers

- Middle ports within proposed VSR budget do not require additional retimers
- Edge ports use additional retimers (shown in yellow) to enable longer overall host channels
- Pros: similar architecture to prior generation systems
- Cons: Cost and power of additional retimers

Intra-box cables

- Edge channels use intra-box cables to enable longer physical reach, but staying within proposed VSR budgets
- Pros: System does not incur cost or power of additional retimers, commonality with existing "PHYless" designs
- Cons: Increases mechanical complexity, may impact airflow, cost of cable and associated mechanicals

Multi-ASIC Linecards (Chassis Systems)

- Each ASIC can connect to fewer, closer module ports, which are supported within VSR proposed budget
- Pros: Similar "PHYless" design to current generation systems
- Cons: Does not address single ASIC "fixed box" designs forecast to be the dominant volume of the datacenter market

MR Capable Modules

- Enable modules with MR capability
- Pros: Similar "PHYless" design to current generation systems
- Cons: Requires MR support in modules, potentially increasing module power. Serdes may require training, and appropriate management support.

Datacenter Switch Market Architectural Forecast

- Aggregate port shipment data presented for 100G and 400G¹
- Datacenter switches are forecast to migrate from chassis to majority fixed / ToRs
- Important to find a low power, cost effective solution which supports the majority of this market!

¹Source: January 2018 CREHAN Long-range Forecast Data Center Switch (used with kind permission)

Possible Additional Work Needed for Different Architectures

- Retimers nothing (VSR budget as proposed appears OK for this approach)
- Cables physical reach will this enable PHYless systems?
 - Asymmetric is an option for endpoints connections perhaps, but not applicable for single ASIC switch – switch DAC links
- Multi-ASIC Chassis Linecards nothing (VSR budget as proposed)
- MR based modules
 - Training required? In-band or out-of band?
 - Additional management complexity?
 - Increase in module power?
- Cost and power models?
 - Always a bit of a minefield...

Summary

- Short host channels have implications on single ASIC solutions which are forecast to be the dominant part of the datacenter deployments at 100 and 400GE
- Economic and system trade-offs need to be understood to ensure we develop a viable solution for this market segment

