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Motivation and Issues

Inconsistent treatment of mode partition noise (MPN)
and relative intensity noise (RIN) in spreadsheet model

— Need for ISI correction

Original MPN theory SD formula is:

— calculated at the center of the bit interval (assumes does
not change over the bit interval)

— applicable to single mode fibers (SMF) only, no bit pattern
and launch conditions dependence

How to apply to multimode fibers (MMF)
Are current inputs backed by measurements?

— k-factor currently used may be wrong

— are all lasers the same (i.e. number of modes, spacing
between modes, rms linewidth)



What is MPN

e laser modes fluctuate in synchronism -
overall signal noise is small (noise in
laser modes anti-correlated)

* |t can be a major source of noise in
links with MULTIMODE lasers and large
chromatic dispersion

e propagation in dispersive media
destroys mode "synchronization" -
large mode fluctuations can be
destructively combined at the receiver -
this extra noise is called mode partition
noise (MPN)
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Approach

Start with the theory developed by Ogawa and Agrawal [1,2]

— Major assumption is that the mode partition noise is calculated in the
center of the eye — this is what the spreadsheet model does

Calculate the MPN SD at each point in the bit interval

— Use Gaussian approximation for the laser spectrum; also check with
measured spectrums

— Use this result later for MMF

Compare the SM result with the exact calculation over the entire bit
interval

— Accuracy check point: the results should be the same at the center of
the eye (confirmed)

— Do not normalize the SD
Extend calculations to multimode fibers and arbitrary bit patterns

— Use mode power distributions (MPD) and mode group delays (MGD) in
the calculation

— Extend the approach to arbitrary bit pattern



MPN Handling in Spreadsheet and Extended Theory

Shreadsheet Extended Theory
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MPD SD calculation over the entire bit interval

e Make same assumptions as Ogawa and Agrawal [1,2]
— only one fiber mode propagates
— cosine shape for received signal, Gaussian laser spectrum
e SetlL=0.1km, k=0.3, A = 850nm, BitRate = 25Gb/s, same rms
linewidth as measured spectrum (numbers for illustration purposes)
e (Calculation repeated for measured laser spectrum (measurement
on 30 Gb/s laser)
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MPN SD calculation (cont’d)

e Calculations of SD using the spreadsheet model
and exact calculation agree at the center of the
eye for one propagating fiber mode

— Implication is the calculations are correct

* Figure shows the MPN SD increases away from
the center of the eye
— Both measured spectrum and Gaussian approximation

for the spectrum have the same shape, with small
difference in SD magnitude and possible time offset

— Important for MMF, since mode group delays will
introduce additional delays



Extension to MMF
-

Signal in each mode group

T}(t) = zMPDl]Alf(AU t — t])
i=1

Overall signal at fiber output OMA M

y(t)= ZZMPD f(4.t-t)A

j=1 i=1

Overall standard deviation at  Easily found following Ogawa and Agrawal’s
the fiber output formalism [1,2]



Extension to MMF

e Get a fiber MPD and normalized MGD, use measured
spectrum

e (Calculate the standard deviation for each mode group
(use the results for one mode fiber, properly weigh the
results using MPDs)
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reduced due to the averaging introduced by mode groups
— Worst case at bit boundaries — much higher impact on jitter

MMF Results

e Use same delay set for OM3 and OM4, for OM4 scale it to assess OM4 impact
e Figures show MPN SD (left axis) and received signal (right axis)
e Comparison of MMF to single fiber mode propagation shows MPN SD is

— Minimum and maximum MPN SD is reduced, although less for OM4 as expected
* Need to repeat for entire link set used in development of OM3 fiber
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MPD SD for Data Pattern — One Fiber
Mode

e |SI does not impact the minimum value of the MPN SD
e MPN SD depends on the slope of the signal
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MPN SD for All Mode Groups

e Calculations repeated for all mode groups
— MPN SD does not become smaller for higher ISI points
— Minimum MPN SD value becomes larger

— MPN SD depends on the slope of the signal — the larger the slope the
higher the MPN SD
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MPN SD for All Mode Groups

e Bits with higher ISI have higher MPN SD
— Need correction in Spreadsheet Model

Bit 6 has higher ISl than bit 4 or bit 1 Yet, MPN SD lowest for

\\ bit 1, highest for bit 6
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e OMA4 fiber, 4 laser modes
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Statistical Simulation

40k link set from OM3 development, various differential
mode delays (DMD) and launch conditions

— MPN SD depends on fiber DMD and launch conditions
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Conclusion

 Extended MPN theory developed by Ogawa and Agrawal to
explore:

— MPN SD over the entire bit interval

— dependence of MPN SD on launch conditions and fiber DMD in
MMF

— MPN SD with arbitrary pattern with or without ISI

e Two mechanisms working in opposite direction, need to
assess the overall effect

— MPN SD increases away from the bit center
— MMF introduces averaging effect, lowering MPN SD

e MPN SD currently calculated by the spreadsheet not
suitable to assess the impact on the jitter

— MPN SD at bit boundaries may be quite high
— High ISl values will increase the effect of MPN SD



We Need Correction for ISl in The
Spreadsheet Model

 Need to divide MPN SD by ISl in the spreadsheet
model

— Lower ISI does not mean higher MPN SD
e Multiple consecutive 1’s or O’s have very little or no MPN SD

e MPN SD statistically lower than what the SM
predicts
— How to include that in the SM

e Further investigate MPN, request more scrutiny
in power/jitter budget presentations
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Amplitude [a.u.]

Signal Eye diagrams

e |SI at laser outputis ~¥1.52 dB
e |SI at the fiber output is ~¥1.9 dB
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Long Random Bit Sequence

e 2000 bit long sequence, SD data folded into one bit interval
e Gaussian spectrum assumption for the laser spectrum
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Mode Power Distribution {a.u.]

Mode Group Delay [ps/m]

Two fibers, two launch conditions
same bandwidth — very different eyes
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