Finisar

Portfolio of short-reach link types, retimed and unretimed electrical interfaces

Piers DaweIPtronicsJonathan KingFinisar

Supporters

- Robert Coenen
- Frank Flens

Reflex Photonics Finisar

Contents

- Reach vs. rate
- Unretimed rate vs. date
- What's different
- Link types
- Unretimed and retimed electrical interface
- Parallel optics
- Reach for parallel optics
- Compatibility
- Conclusion

Introduction

- As rate per lane goes up, reach goes down
- Equipment rooms must deal with multiple media
- But these can plug into common sockets

802.3 study group, September 2011 Portfolio of short-reach link types, retimed and unretimed electrical interfaces

Progress of unretimed interfaces

Portfolio of short-reach link types, retimed and unretimed electrical interfaces

What's different about 25 G lanes?

- ... as compared with 10G lanes
- MMF bandwidth means shorter reaches
- VCSEL speed is challenged
- More chromatic dispersion penalty
- Wider noise bandwidth more RIN
- Reach of copper cable is reduced more focus on truly short optical links

What's not different

- Silicon can be fast enough
- Low power, size and cost are still desired
- Optical connectors still have a cost
- Electrical connectors can be made about as good at 25 G/lane as was accepted for 10 G/lane

Possible short link types

• Six topologies are enabled by a smaller number of standardized interfaces:

	Туре	Connector
1	Electrical backplane	Backplane connectors
2	Optical backplane	n n
3	Copper cable e.g. twinax	Front or back panel electrical connectors or sockets
4	Active optical cable	
5	Passive optical cable	Front or back panel optical connectors, mid-board O/E
6	Pluggable fibre optics	Front or back panel electrical connectors or sockets, module optical connectors, further optical connectors

- At 10G/lane, 802.3 and SFP+, QSFP+, CXP enable 1, 2 (if the waveguide is MMF), 3, 4, 5, 6
 - Standard specs for MMF are sub-optimal for short (10s of m and below) links:
 - Burden of supporting the fewer longer links,
 - May not have optimal waveguide or connector type for optical backplane
- At 25 G/lane, 802.3 and SFP+, QSFP+, CXP enable 2 (if the waveguide is MMF)
- 100GCU is working on 1 and 3
- NG100GOE Study Group should study 4, 5, 6 and could consider a more optimised support of 2
 - 4 and 5 may or may require little or no action in the Task Force

What about the unretimed electrical interface?

- The unretimed electrical interface (like GBIC, SFI, nPPI) is the desired objective, *if* it is viable at this speed
- Benefits
 - Compatibility across some media types, and speeds
 - Minimum power, as long as host and media channels not too demanding
 - Simpler, lower power ASIC I/O than for passive electrical cable
 - Pay as you grow with unpopulated ports
 - Compatible with optional FEC
 - E.g. for two PMD variants: minimum power/cost/size/latency and greater reach
 - No need to manage in-module CDR frequencies
- Disadvantages
 - Optical and electrical specifications should be designed together
 - On-PCB performance has to be better than either with retimed electrical interface such as XAUI, XLAUI, CAUI, or with option 5 that can use mid-board mounted transceivers
 - Requires good ASIC package performance
- Because it's harder, the unretimed interface can enter the market after the retimed, e.g. XFP then SFP+
- Because it's easier, AOCs can enter the market before pluggable modules
 - for the same link length and retimed/unretimed status

And the retimed electrical interface?

- Benefits
 - Compatibility across media types
 - Simpler, lower power ASIC I/O than for passive electrical cable
 - Relaxed IC and PCB performance requirements
 - Pay as you grow with unpopulated ports
 - Compatible with optional FEC
 - E.g. for two PMD variants: minimum power/cost/size/latency and greater reach
 - Independent analog interfaces, reduced test cost
- Disadvantages
 - Need to plan for all signalling rates (e.g. 10G, 25G, 25G+FEC)
 - Should be designed together at the same time as or after the unretimed interface
 - Example CDR power consumption might be 150 to 250 mW/lane each way depending on process
 - or 1.2 W to 2 W per module or cable end for 4 lanes
- Is the retimed electrical interface viable at 25G/lane?
 - It's "only" 4 lanes each way not 10 lanes each way
 - Conventional NRZ is suitable for both electrical and optical parts of the link, no need for recoding
 - 25G/lane CDRs are beginning to become available
- Conclusion: yes. Should be a subset of the unretimed electrical interface
- Is there merit in half-retimed? If so, which end?
 - For study

Considerations for unretimed electrical interface at 25 Gb/lane

- Challenges
 - Frequency-dependent PCB loss has to be compensated somewhere
 - ASIC package, PCB and fibre impairments come out of the same jitter budget
 - Noise, electrical crosstalk and reflections
 - VCSEL speed
- Solutions
 - PCB loss compensation
 - There is a range from simple to sophisticated
 - Fast low noise lasers
 - An active optical cable (AOC) avoids two or more optical connectors and allows optimised setup
 - so can be faster, or lower power, or lower jitter, than pluggables for the same technology.
 - An AOC's reach is known and usually shorter than the longest supported reach for pluggable

Considerations for retimed or unretimed at 25 Gb/lane

- To think about
 - Wavelength
 - Reduce chromatic dispersion at e.g. 980 nm rather than 850 nm
 - FEC
 - Used in 10GBASE-KR (optionally), 10GEPON (always), and 40/100GE copper and backplane (optionally). Two schemes
 - Expect that 100GCU will use FEC also could be a new scheme
 - Trade off between latency, overhead and benefit to budget.
 - The round trip time of a 30 m passive cable alone is 2 * 30 m * 5 ns/m * 100 Gb/s = 30,000 MAC bit times
 - All 25G/lane types (electrical and optical) would benefit from FEC
 - For optical; trade off between FEC, RIN, and to an extent, MMF or PCB reach
 - Equalisation of the optical signal
 - Test cost
 - Retimed interface may need less testing than unretimed
 - AOCs have fewer analog interfaces to test than pluggables

Relative capabilities

- Maybe technology that's good enough to deliver
 - 10G unretimed pluggable modules (e.g. SFP+ or nPPI/QSFP+) could deliver
 - 13G unretimed AOC, or
 - 14G retimed pluggable, or
 - 16G retimed AOC
- Or restated another way, a similar technology level could deliver retimed pluggable or unretimed AOC
- If retimed, the AOC could have greater reach, or lower power, than the equivalent pluggable.

Rates available now and in the near future for parallel optics

- Generally, each generation (speed) of small parallel optics modules and AOCs has been unretimed
- Serial speeds on MMF are introduced a little earlier than parallel
- 10 GBd InfiniBand QDR has been available since 2008
- 10.3125 GBd 40GBASE-SR4 and AOCs have been available since 2010
- 14.0625 GBd InfiniBand FDR AOCs "will be generally available sometime in the second half of this year"
- Target is 25.78125 GBd
 - Or slightly higher with FEC
- So only a factor of 1.85 in speed to go!
- According to the trend on slide 5, that might happen in 2014-5
- Expect unretimed pluggables to follow two or three years behind

What reach is appropriate?

- This is all for data centres/equipment rooms/supercomputers/central offices
 - No Broad Market Potential for 100GE in campus wiring in timeframe of this project
 - This presentation does not address the longer reach, SMF, "big module"
- Have to reserve some of the budget for electrical connector and host PCB
- Do not push fibre length to the max
 - Do not repeat the 300 m/OM3/SFP+ difficulties of 10GBASE-SR, learn from the interest in 10G "USR"
- There are many more short links than long links
- All but intra-rack links likely to be optical
- Therefore optimise for cost of the short links (3 m to 30 m)
 - More survey information in this area would be very valuable
- Most of these short links can be AOCs
 - There should still be a cost-optimised pluggable spec
 - Is there Broad Market Potential for a separate, longer reach 4x MMF spec?
 - Would this be entirely different or interoperable?

Fully retimed single lane 28 GBd model

Retimed model results

Extract from T11/11-241v0 Jonathan King and Jim Tatum, June 2011

- A 'simple' retimed module with expected Tx and RX parameter values may allow 30 50 metres on OM3, 50 -70 metres on OM4
 - (for 4.4 to 5 dB max path penalty)
 - Longer reach if Tx parameters improve: Tx Rise/fall time, RIN, most critical

Connector loss allowance: 1.5 dB for OM3, 1 dB for OM4. RIN_xOMA -130 dB/Hz

802.3 study group, September 2011 7

Unretimed, 25.78125 GBd

Host Tx jitter	nPPI	16GFC		
RIN _x OMA= -132.82 dB/Hz				
OM2	10	-		
OM3	25	-		
OM4	31	-		
RIN _x OMA= -130 dB/Hz				
	Too much TJ at TP4			
Any fibre	Too m at TP₄	uch TJ		
Any fibre RIN _x OMA= -13 KR FEC	Too m at TP4 30 dB/H	nuch TJ 4 Hz and		
Any fibre RIN _x OMA= -13 KR FEC OM2	Too m at TP4 30 dB/H 2	nuch TJ 4 Hz and 5		
Any fibre RIN _x OMA= -13 KR FEC OM2 OM3	Too m at TP4 30 dB/H 2 66	nuch TJ 1 Hz and 5 10		

- Predicted reach in metres very preliminary, subject to change
- Same model as previous slide, but with host jitter
 - 18 ps rise time
- Criteria are <4.4 dB link penalties at eye centre and <0.71 UI TJ at TP4
 - Jitter limited without FEC
- Connector loss 1.5 dB for all fibre types
- nPPI jitter seems too optimistic at 25G jitter in UI may be more similar to 16GFC
- Ethernet line rate is 8% slower than 32GFC makes a worthwhile difference
- This represents pluggable modules. AOCs would tolerate a little more jitter
- This FEC has a coding gain of 1.1 optical dB. Stronger codes are available.

Portfolio of short-reach link types, retimed and unretimed electrical interfaces

Compatibility

- Seek a very high level of compatibility between retimed and unretimed
 - Compatible voltages, reflection specs and so on
 - CPPI-4 signals wholly compliant with CAUI-4 minimal mode setting needed for interoperability, can use retimed module in unretimed slot
 - E.g. CPPI-4 reflection spec should be within CAUI-4 reflection spec
 - Because there is more design freedom for CAUI-4, design CPPI-4 first
 - Probably same form factor e.g. QSFP+ whether retimed or not
- Backward compatibility with XLPPI (nPPI for 40GBASE-SR) and XLAUI
- Compatibility with 40GBASE-CR4 and 100GBASE-CR4
 - Host reads the module/cable registers and sets its mode accordingly
- Compatibility with InfiniBand EDR gains economies of scale
 - See "Compatibility of Different Port Types at a Big IC", <u>http://ieee802.org/3/ba/public/jul08/dawe_03_0708.pdf</u> for much more detail in the context of 10G lanes

Finisar

Conclusion

- A retimed "CAUI-4" would be viable for short optical links until faster lasers came along
 - but would have a longer life for optical links that contain a CDR anyway, e.g. because they contain DFE or use QPSK, or multiplex to 50 or 100 Gb/s/lane
- An unretimed "CPPI-4" would be viable in the time horizon of this project
- Both retimed and unretimed electrical interfaces should be part of this project
- Focus clearly on low cost for the majority of links
 - E.g. 3 m to 30 m
 - Plan for a retimed and unretimed future
 - Do not repeat the 300 m 10GBASE-SR mistake