10GBASE-T

Physical Layer Specifications

January 2003
Vancouver, CA

Chris DiMinico
CDT Corporation
cd@mohawk-cdt.com
1000BASE-T Link Segment

• 1000BASE-T- The cabling system components (cables, cords, and connectors) used to provide the link segment shall consist of Category 5 components as specified in ANSI/TIA/EIA-568-A:1995 and ISO/IEC 11801:1995. Additionally:

b) 1000BASE-T is an ISO/IEC 11801 Class D application, with additional installation requirements and transmission parameters specified in Annex 40A.

• The term ‘link segment’ refers to four duplex channels and the term ‘duplex channel’ refers to a single channel with full duplex capability.

• Specifications for a link segment apply equally to each of the four duplex channels.
Figure 40A-1—Maximum horizontal subsystem configuration
Figure 40A-2—Minimum horizontal subsystem configuration
1000BASE-T Channel Models

- **Worst Case NEXT - 3 disturbers - Cat 5**
 - $27.1 - 16.8 \log_{10}(f/100)$ dB

- **FEXT - 3 disturbers**
 - $17 - 20\log_{10}(f/100)$ dB
 - $19.5 - 20\log_{10}(f/100)$ dB
 - $23 - 20\log_{10}(f/100)$ dB

- **PSELFEXT loss > 14.4 - 20\log_{10}(f/100)$$ dB

- **Return loss (2 models)**
 - -15 dB (1-20 MHz)
 - $-15 - 10\log_{10}(f/20)$ (20-100 MHz)

- **Insertion Loss (cat 5)**
 - $\text{Insertion_Loss}(f) < 2.1 f^{0.529} + 0.4/f$ (dB)
1000BASE-T Matlab Code

- 3dB Design Point
- 10dB Design Point
3 dB Design Point -Summary Assumptions

D/ A: 17 levels at 125MHz
Launch Level: 2V ptp
Analog Transmit Filter: Single pole RC
Analog Receive Filter: BW2@ 100MHz
A/ D: 5.5bits ideal at 125MHz
Baseline Wander Correction: Digital
FFE - #taps: 12 taps at 125MHz
DFE - #taps: 10 taps at 125MHz
NEXT Cancellers - #taps: 12 taps at 125MHz
Echo Canceller - #taps: 50 taps at 125MHz
Viterbi Decoder: 12- stage
Total worst- case latency: 31BT < 40BT
Uniform Jitter Tolerance for 0dB margin: 1.3ns ptp [> 10ns ptp Gaussian]
Worst- Case Total Noise Budget: 140mV ptp
Est. Gate Count/ Power Consumption: 130K/ 2.2W
Margin without FEXT: 3.6dB (relative external noise margin)
Margin with Worst- Case FEXT: 2.6dB (relative external noise margin)
10 dB Design Point - Summary Assumptions

D/A: 17 levels at 125MHZ
Launch Level: 2V ptp
Analog Transmit Filter: Single pole RC
Analog Receive Filter: BW2@ 100MHz
A/ D: 6.5bits ideal at 125MHz
Baseline Wander Correction: Digital
FFE - #taps: 16 taps at 125MHz
DFE - #taps: 12 taps at 125MHz
NEXT Cancellers - #taps: 72 taps at 125MHz
Echo Canceller - #taps: 120 taps at 125MHz
Viterbi Decoder: 12- stage
Total worst-case latency: 31BT < 40BT
Uniform Jitter Tolerance for 0dB margin: 1.5ns ptp [> 10ns ptp Gaussian]
Worst- Case Total Noise Budget: 140mV ptp
Est. Gate Count/ Power Consumption: 330K/ 4W
Margin without FEXT: 10.5dB (relative external noise margin residual noise)
Margin with Worst- Case FEXT: 7.0dB (relative external noise margin residual noise)
1000BASE-T Link Specifications - Minimum Requirements

Cabling Installed to TIA/EIA-568-A with additional parameters as specified in Addendum and proposed TIA/EIA-Technical System Bulletin

IEEE 1000BASE-T- 802.3/ab
Installed Cabling Specification
- NEXT
- Attenuation
- ELFEXT
- Return Loss
- Delay, Delay Skew

TIA/EIA-568-A
- NEXT
- Attenuation

TIA/EIA-568-A-1
- Delay
- Delay Skew

TIA/EIA-TSB-95
- ELFEXT
- Return Loss
- Field Testing

10GBASE-T
1000BASE-T Link Specifications

When Installing 1000BASE-T Links

- TIA/EIA-568-A
 - Attenuation
 - NEXT
- IEEE
 1000BASE-T- 802.3/ab
 Installed Cabling Specification
 - NEXT (worst pair)
 - Attenuation
 - ELFEXT (power sum)
 - Return Loss
 - Delay, Delay Skew

Category 5e

 - NEXT (worst pair, power sum)
 - ELFEXT (worst pair, power sum)
 - Return Loss
 - Field Testing

- TIA/EIA-568-A-1
 - Delay
 - Delay Skew
1000BASE-T Link Specifications

When Installing 1000BASE-T Links

IEEE
1000BASE-T- 802.3/ab
Installed Cabling Specification

ISO/IEC 11801 2nd edition -Class D
ISO/IEC 11801 2nd edition -Class E

ANSI/TIA/EIA
568-A-1995

568-B.1
Main Document
568-B2-1
Category 6

568-B.2
Copper

568-B.3
Fiber

Category 5e

ANSI/TIA/EIA
568-B-2000
10GBASE-T Link Specifications

IEEE 10GBASE-T- 802.3
Installed Cabling Specification

ISO/IEC 11801 2nd edition -Class D
ISO/IEC 11801 2nd edition -Class E

ANSI/TIA/EIA 568-B-2000
Main Document

ANSI/TIA/EIA 568-B-1995
Cabling Characterization
>250 MHz

ANSI/TIA/EIA 568-B-2000
Category 5e

ANSI/TIA/EIA 568-B2-1
Category 6

568-B.1
Copper

568-B.2
Fiber

568-B.3

ISO/IEC 11801 2nd edition -Class D
ISO/IEC 11801 2nd edition -Class E

ANSI/TIA/EIA 568-B-2000
Category 5e

10GBASE-T
Cabling - Specifications

Category 5e Channel Transmission Performance

<table>
<thead>
<tr>
<th>Frequency MHz</th>
<th>Ins. Loss Max (dB)</th>
<th>NEXT Min (dB)</th>
<th>ACR Min (dB)</th>
<th>PSNEXT Min (dB)</th>
<th>PSACR Min (dB)</th>
<th>ELFEXT Min (dB)</th>
<th>PSELFEXT Min (dB)</th>
<th>Return Loss Min (dB)</th>
<th>Prop. Delay Max (ns/100m)</th>
<th>Delay Skew Max (ns/100m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.2</td>
<td>>60</td>
<td>>57</td>
<td>>57</td>
<td>>54.8</td>
<td>57.4</td>
<td>54.4</td>
<td>17</td>
<td>580</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>4.5</td>
<td>53.5</td>
<td>49</td>
<td>50.5</td>
<td>46</td>
<td>45.4</td>
<td>42.4</td>
<td>17</td>
<td>562</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>6.3</td>
<td>48.6</td>
<td>42.3</td>
<td>45.6</td>
<td>39.3</td>
<td>39.3</td>
<td>36.3</td>
<td>17</td>
<td>557</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>7.1</td>
<td>47</td>
<td>39.9</td>
<td>44</td>
<td>36.9</td>
<td>37.4</td>
<td>34.4</td>
<td>17</td>
<td>555</td>
<td>50</td>
</tr>
<tr>
<td>16</td>
<td>9.1</td>
<td>43.6</td>
<td>34.5</td>
<td>40.6</td>
<td>31.5</td>
<td>33.3</td>
<td>30.3</td>
<td>17</td>
<td>553</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>10.2</td>
<td>42</td>
<td>31.8</td>
<td>39</td>
<td>28.8</td>
<td>31.4</td>
<td>28.4</td>
<td>17</td>
<td>552</td>
<td>50</td>
</tr>
<tr>
<td>25</td>
<td>11.4</td>
<td>40.3</td>
<td>28.9</td>
<td>37.3</td>
<td>25.9</td>
<td>29.4</td>
<td>26.4</td>
<td>16</td>
<td>551</td>
<td>50</td>
</tr>
<tr>
<td>31.25</td>
<td>12.9</td>
<td>38.7</td>
<td>25.8</td>
<td>35.7</td>
<td>22.8</td>
<td>27.5</td>
<td>24.5</td>
<td>15.1</td>
<td>550</td>
<td>50</td>
</tr>
<tr>
<td>62.5</td>
<td>18.6</td>
<td>33.6</td>
<td>15</td>
<td>30.6</td>
<td>12</td>
<td>21.5</td>
<td>18.5</td>
<td>12.1</td>
<td>549</td>
<td>50</td>
</tr>
</tbody>
</table>

| 100 | 24 | 30.1 | 6.1 | 27.1 | 3.1 | 17.4 | 14.4 | 10 | 548 | 50 |

(*ISO/IEC 11801 2nd edition -Class D*)

[Diagram showing connecting hardware, consolidation point, equipment, cross-connect, building Cable, work area cable, and Channel]

10GBASE-T
Cabling - Specifications

Category 6 Channel Transmission Performance

<table>
<thead>
<tr>
<th>Frequency MHz</th>
<th>Ins. Loss Max (dB)</th>
<th>NEXT Min (dB)</th>
<th>ACR Min (dB)</th>
<th>PSNEXT Min (dB)</th>
<th>PSACR Min (dB)</th>
<th>ELFEXT Min (dB)</th>
<th>PSELFEXT Min (dB)</th>
<th>Return Loss Min (dB)</th>
<th>Prop. Delay Max (ns/100m)</th>
<th>Delay Skew Max (ns/100m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.1</td>
<td>>65</td>
<td>>62.9</td>
<td>>62</td>
<td>>59.9</td>
<td>63.3</td>
<td>60.3</td>
<td>19</td>
<td>580</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>63</td>
<td>59</td>
<td>60.5</td>
<td>56.5</td>
<td>51.2</td>
<td>48.2</td>
<td>19</td>
<td>562</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>5.7</td>
<td>58.2</td>
<td>52.5</td>
<td>55.6</td>
<td>49.9</td>
<td>45.2</td>
<td>42.2</td>
<td>19</td>
<td>557</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>6.3</td>
<td>56.6</td>
<td>50.3</td>
<td>54</td>
<td>47.7</td>
<td>43.3</td>
<td>40.3</td>
<td>19</td>
<td>555</td>
<td>50</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>53.2</td>
<td>45.2</td>
<td>50.6</td>
<td>42.6</td>
<td>39.2</td>
<td>36.2</td>
<td>18</td>
<td>553</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>51.6</td>
<td>42.6</td>
<td>49</td>
<td>40</td>
<td>37.2</td>
<td>34.2</td>
<td>17.5</td>
<td>552</td>
<td>50</td>
</tr>
<tr>
<td>25</td>
<td>10.1</td>
<td>50</td>
<td>39.9</td>
<td>47.3</td>
<td>37.2</td>
<td>35.3</td>
<td>32.3</td>
<td>17</td>
<td>551</td>
<td>50</td>
</tr>
<tr>
<td>31.25</td>
<td>11.4</td>
<td>48.4</td>
<td>37</td>
<td>45.7</td>
<td>34.3</td>
<td>33.4</td>
<td>30.4</td>
<td>16.5</td>
<td>550</td>
<td>50</td>
</tr>
<tr>
<td>62.5</td>
<td>16.5</td>
<td>43.4</td>
<td>26.9</td>
<td>40.6</td>
<td>24.1</td>
<td>27.3</td>
<td>24.3</td>
<td>14</td>
<td>549</td>
<td>50</td>
</tr>
</tbody>
</table>

(*~ISO/IEC 11801 2nd edition -Class E*)

Difference in Channel Transmission Performance (Cat 6 vs. Cat 5e)

<table>
<thead>
<tr>
<th>Frequency MHz</th>
<th>Ins. Loss Max (dB)</th>
<th>NEXT Min (dB)</th>
<th>ACR Min (dB)</th>
<th>PSNEXT Min (dB)</th>
<th>PSACR Min (dB)</th>
<th>ELFEXT Min (dB)</th>
<th>PSELFEXT Min (dB)</th>
<th>Return Loss Min (dB)</th>
<th>Prop. Delay Max (ns/100m)</th>
<th>Delay Skew Max (ns/100m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.1</td>
<td>>5</td>
<td>>5</td>
<td>>5</td>
<td>>5</td>
<td>5.9</td>
<td>5.9</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>-0.5</td>
<td>9.5</td>
<td>10</td>
<td>10</td>
<td>10.5</td>
<td>5.8</td>
<td>5.8</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>-0.6</td>
<td>9.6</td>
<td>10.2</td>
<td>10</td>
<td>10.6</td>
<td>5.9</td>
<td>5.9</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>-0.8</td>
<td>9.6</td>
<td>10.4</td>
<td>10</td>
<td>10.8</td>
<td>5.9</td>
<td>5.9</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>-1.1</td>
<td>9.6</td>
<td>10.7</td>
<td>10</td>
<td>11.1</td>
<td>5.9</td>
<td>5.9</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>-1.2</td>
<td>9.6</td>
<td>10.8</td>
<td>10</td>
<td>11.2</td>
<td>5.8</td>
<td>5.8</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>-1.3</td>
<td>9.7</td>
<td>11</td>
<td>10</td>
<td>11.3</td>
<td>5.9</td>
<td>5.9</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31.25</td>
<td>-1.5</td>
<td>9.7</td>
<td>11.2</td>
<td>10</td>
<td>11.5</td>
<td>5.9</td>
<td>5.9</td>
<td>1.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>62.5</td>
<td>-2.1</td>
<td>9.8</td>
<td>11.9</td>
<td>10</td>
<td>12.1</td>
<td>5.8</td>
<td>5.8</td>
<td>1.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>-2.7</td>
<td>9.8</td>
<td>12.5</td>
<td>10</td>
<td>12.7</td>
<td>5.9</td>
<td>5.9</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>