Line Code Options for 10GBASE-T

Brian Murray Stephen Bates

Outline

- Line Code Options
- ENOB Requirements
- Crest Factor
- DFE Requirements
- Constrained DFE
- Realistic Line Code options

Assumptions

- -80dBm/Hz limit on transmit PSD to comply with FCC class A limits.
- Channel and noise models as per 10GE Tutorial November 2002
- Sample rate simulation with MMSE solution for large equalizer (FFE and DFE)
- -17dB noise power target assumed (about 5.5dB coding gain).

Line Code / Baud Rate Options

No.	Option	Baud Rate (M symbols/s)	PAM Levels (total)
1	1250-PAM5	1250	[-2:2] (5)
2	1000-PAM7	1000	[-3:3] (7)
3	833-PAM10	833	[-9/2:9/2] (10)
4	833-PAM11	833	[-5:5] (11)
5	625-PAM20	625	[-19/2:19/2] (20)
6	500-PAM39	500	[-19:19] (39)
7	125-PAM5	125	[-2:2] (5)

Noise Mix Excluding ADC

Noise break-down for line code options

Receiver ENOB Requirements

ENOB required to meet SNR target at the slicer

Comments

- Alien NEXT is dominant in all 10 Gig cases
- Optimum from a noise power perspective is at 833 MHz
- ADC requirements fall as baud rate is increased
- Below 500 MHz channel capacity becomes less than 10 Gigabits/s

Noise mix with no Alien NEXT

What are the benefits if Alien NEXT is reduced

Receiver ENOB with no Alien NEXT

ADC ENOB requirement is only reduce by 0.5

Crest Factor

Little difference in Crest Factor

DFE Requirements

Large DFE taps required for MMSE solution

DFE Requirements

- To achieve MMSE large DFE taps are required for line code schemes
- Major implications for signal recovery
- Major implications for code design
- Major implications for error propagation
- Can the DFE be constrained

DFE with Constrained Taps

Constrain first tap to 0.75

Noise Mix for Constrained DFE

ISI increased only slightly

ENOB Requirements

ENOB increased by about 0.5

Comments

- Energy in taps reduced by up to a factor of 10
- ISI is now a much larger impairment
- Clearly shows pre-coding could be very advantageous

Realistic Line Code Options

- Line code options from 1250PAM-5 to 500PAM-39 are all possible
 - In practice 9-11 bit ADC required
 - Implementation constraints will affect choice
- Constrained DFSE or Pre-coding will be needed
 - Pre-coding will have to be defined within the standard
- Use existing 1000BASE-T code
 - Extra coding gain (9dB or 12dB) to shift design complexity into digital domain is an option

